Preview

Obesity and metabolism

Advanced search

Cardiorehabilitation of metabolic syndrome in the aftermath of the COVID-19 pandemic

https://doi.org/10.14341/omet13203

Abstract

ABSTRACT: Metabolic syndrome-related diseases account for two-thirds of non-communicable disease deaths, most of which may begin early in life. The pro-inflammatory environment observed in obese MS patients may contribute to immune dysregulation in COVID-19 patients, including suboptimal immune responses, hyperinflammation, microvascular dysfunction, and thrombosis. Exercise may be a key intervention to reduce inflammation in obese COVID-19 patients as it may reduce adipocyte number and size, as well as inflammatory response and cytokine expression associated with excess adipose tissue-mediated immune dysregulation. Given the increasing number of people with metabolic syndrome and the significance of this pathology in the context of the consequences of the COVID-19 pandemic, as well as the importance of physical activity in the treatment, rehabilitation and prevention of cardiometabolic risk factors, it is necessary to consider the main aspects of the pathogenesis of MS, the features of rehabilitation strategies in patients with metabolic syndrome and obesity with the consequences of previous NVI. The aim of the review was to search, summarize and discuss the available literature data on the development and pathogenesis of metabolic syndrome in the long-term post-COVID period, as well as systematize the available methods of cardiac rehabilitation in this category of people.

MATERIALS AND METHODS: The search and selection of literary sources was carried out in the system of published research in scientific databases cyberleninka.ru, elibrary.ru, link.springer.com, frontiersin.org, pubmed.ncbi.nlm.nih.gov, Web of Science, Google Scholar and others.

About the Authors

K. S. Avdeeva
Tyumen Cardiology Research Center, Tomsk National Research Medical Center Of The Russian Academy Of Sciences
Russian Federation

Ksenia S. Avdeeva

Researcher ID: J-1751-2017

Scopus Author ID: 57210713674

111 Melnikaite street, 625026 Tyumen


Competing Interests:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи



T. I. Petelina
Tyumen Cardiology Research Center, Tomsk National Research Medical Center Of The Russian Academy Of Sciences
Russian Federation

Tatiana I. Petelina, MD

Researcher ID: I-8913-2017

Scopus Author ID: 6507194861

Tomsk


Competing Interests:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи



I. N. Redkina
Tyumen Cardiology Research Center, Tomsk National Research Medical Center Of The Russian Academy Of Sciences
Russian Federation

Irina N. Redkina

Tomsk


Competing Interests:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи



Yu. A. Sharoyan
Tyumen Cardiology Research Center, Tomsk National Research Medical Center Of The Russian Academy Of Sciences
Russian Federation

Yulia A. Sharoyan

Tomsk


Competing Interests:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи



A. V. Gorbachevskii
Tyumen Cardiology Research Center, Tomsk National Research Medical Center Of The Russian Academy Of Sciences
Russian Federation

Aleksandr V. Gorbachevskii

Tomsk


Competing Interests:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи



References

1. Hsu CN, Hou CY, Hsu WH, Tain YL. Early-Life Origins of Metabolic Syndrome: Mechanisms and Preventive Aspects. Int J Mol Sci. 2021;22(21):11872. doi: https://doi.org/10.3390/ijms222111872

2. Cornier MA, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, et al. The metabolic syndrome. Endocr Rev. 2008;29(7):777-822. doi: https://doi.org/10.1210/er.2008-0024

3. Van Alsten SC, Rabkin CS, Sawada N, Shimazu T, Charvat H, et al. Metabolic Syndrome, Physical Activity, and Inflammation: A CrossSectional Analysis of 110 Circulating Biomarkers in Japanese Adults. Cancer Epidemiol Biomarkers Prev. 2020;29(8):1639-1646. doi: https://doi.org/10.1158/1055-9965.EPI-19-1513

4. Lihua M, Kaipeng Z, Xiyan M, Yaowen C, Tao Z. Systematic review and meta-analysis of stress management intervention studies in patients with metabolic syndrome combined with psychological symptoms. Medicine (Baltimore). 2023;102(42):e35558. doi: https://doi.org/10.1097/MD.0000000000035558

5. Fahed G, Aoun L, Bou Zerdan M, Allam S, Bou Zerdan M, Bouferraa Y, Assi HI. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int J Mol Sci. 2022;23(2):786. doi: https://doi.org/10.3390/ijms23020786

6. Saklayen MG. The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep. 2018;20(2):12. doi: https://doi.org/10.1007/s11906-018-0812-z

7. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011;11(9):607-15. doi: https://doi.org/10.1038/nri3041

8. Khanna D, Welch BS, Rehman A. Pathophysiology of Obesity. 2022 Oct 20. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024

9. Yang Y, Song Y, Hou D. Obesity and COVID-19 Pandemics: Epidemiology, Mechanisms, and Management. Diabetes Metab Syndr Obes. 2023;16:4147-4156. doi: https://doi.org/10.2147/DMSO.S441762

10. Yaribeygi H, Maleki M, Sathyapalan T, Jamialahmadi T, Sahebkar A. Pathophysiology of Physical Inactivity-Dependent Insulin Resistance: A Theoretical Mechanistic Review Emphasizing Clinical Evidence. J Diabetes Res. 2021;2021:7796727. doi: https://doi.org/10.1155/2021/7796727

11. Golbidi S, Mesdaghinia A, Laher I. Exercise in the metabolic syndrome. Oxid Med Cell Longev. 2012;2012:349710. doi: https://doi.org/10.1155/2012/349710

12. Nishii K, Aizu N, Yamada K. Review of the health-promoting effects of exercise and the involvement of myokines. Fujita Med J. 2023;9(3):171-178. doi: https://doi.org/10.20407/fmj.2022-020

13. Al-Ibraheem AMT, Hameed AAZ, Marsool MDM, Jain H, Prajjwal P, et al. Exercise-Induced cytokines, diet, and inflammation and their role in adipose tissue metabolism. Health Sci Rep. 2024;7(9):e70034. doi: https://doi.org/10.1002/hsr2.70034

14. Singh R, Rathore SS, Khan H, Karale S, Chawla Y, et al. Association of Obesity With COVID-19 Severity and Mortality: An Updated Systemic Review, Meta-Analysis, and MetaRegression. Front Endocrinol (Lausanne). 2022;13:780872. doi: https://doi.org/10.3389/fendo.2022.780872

15. Barkhordarian M, Behbood A, Ranjbar M, Rahimian Z, Prasad A. Overview of the cardio-metabolic impact of the COVID-19 pandemic. Endocrine. 2023;80(3):477-490. doi: https://doi.org/10.1007/s12020-023-03337-3

16. Bansal R, Gubbi S, Muniyappa R. Metabolic Syndrome and COVID 19: Endocrine-Immune-Vascular Interactions Shapes Clinical Course. Endocrinology. 2020;161(10):bqaa112. doi: https://doi.org/10.1210/endocr/bqaa112

17. Marino FE, Vargas NT, Skein M, Hartmann T. Metabolic and inflammatory health in SARS-CoV-2 and the potential role for habitual exercise in reducing disease severity. Inflamm Res. 2022;71(1):27-38. doi: https://doi.org/10.1007/s00011-021-01517-3

18. Jang S, Hong W, Moon Y. Obesity-compromised immunity in post-COVID-19 condition: a critical control point of chronicity. Front Immunol. 2024;15:1433531. doi: https://doi.org/10.3389/fimmu.2024.1433531

19. Gusev E, Sarapultsev A. Exploring the Pathophysiology of Long COVID: The Central Role of Low-Grade Inflammation and Multisystem Involvement. Int J Mol Sci. 2024;25(12):6389. doi: https://doi.org/10.3390/ijms25126389

20. Soriano JB, Murthy S, Marshall JC, Relan P, Diaz JV; WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis. 2022;22(4):e102-e107. doi: https://doi.org/10.1016/S1473-3099(21)00703-9

21. Lippi G, Sanchis-Gomar F, Henry BM. COVID-19 and its longterm sequelae: what do we know in 2023? Pol Arch Intern Med. 2023;133(4):16402. doi: https://doi.org/10.20452/pamw.16402

22. Talla A, Vasaikar SV, Szeto GL, Lemos MP, Czartoski JL, et al. Persistent serum protein signatures define an inflammatory subcategory of long COVID. Nat Commun. 2023;14(1):3417. doi: https://doi.org/10.1038/s41467-023-38682-4

23. Lai YJ, Liu SH, Manachevakul S, Lee TA, Kuo CT, Bello D. Biomarkers in long COVID-19: A systematic review. Front Med (Lausanne). 2023;10:1085988. doi: https://doi.org/10.3389/fmed.2023.1085988

24. Wrona M, Skrypnik D. New-Onset Diabetes Mellitus, Hypertension, Dyslipidaemia as Sequelae of COVID-19 Infection-Systematic Review. Int J Environ Res Public Health. 2022;19(20):13280. doi: https://doi.org/10.3390/ijerph192013280

25. Lino RS, Silva MSP, Jesus DS, Macedo RC, Lagares LS, et al. Molecular aspects of COVID-19 and its relationship with obesity and physical activity: a narrative review. Sao Paulo Med J. 2023;141(1):78-86. doi: https://doi.org/10.1590/1516-3180.2021.1038.R1.06072022

26. Chomiuk T, Niezgoda N, Mamcarz A, Śliż D. Physical activity in metabolic syndrome. Front Physiol. 2024;15:1365761. doi: https://doi.org/10.3389/fphys.2024.1365761

27. Shariful Islam M, Fardousi A, Sizear MI, Rabbani MG, Islam R, Saif-Ur-Rahman KM. Effect of leisure-time physical activity on blood pressure in people with hypertension: a systematic review and meta-analysis. Sci Rep. 2023;13(1):10639. doi: https://doi.org/10.1038/s41598-023-37149-2

28. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, et al. The Physical Activity Guidelines for Americans. JAMA. 2018;320(19):2020-2028. doi: https://doi.org/10.1001/jama.2018.14854

29. Jiahao L, Jiajin L, Yifan L. Effects of resistance training on insulin sensitivity in the elderly: A meta-analysis of randomized controlled trials. J Exerc Sci Fit. 2021;19(4):241-251. doi: https://doi.org/10.1016/j.jesf.2021.08.002

30. Correia RR, Veras ASC, Tebar WR, Rufino JC, Batista VRG, Teixeira GR. Strength training for arterial hypertension treatment: a systematic review and meta-analysis of randomized clinical trials. Sci Rep. 2023;13(1):201. doi: https://doi.org/10.1038/s41598-022-26583-3

31. Al-Mhanna SB, Batrakoulis A, Wan Ghazali WS, Mohamed M, Aldayel A, et al. Effects of combined aerobic and resistance training on glycemic control, blood pressure, inflammation, cardiorespiratory fitness and quality of life in patients with type 2 diabetes and overweight/obesity: a systematic review and meta-analysis. PeerJ. 2024;12:e17525. doi: https://doi.org/10.7717/peerj.17525

32. Liang C, Song Z, Yao X, Xiao Q, Fu H, Tang L. Exercise interventions for the effect of endothelial function in hypertensive patients: A systematic review and meta-analysis. J Clin Hypertens (Greenwich). 2024;26(6):599-614. doi: https://doi.org/10.1111/jch.14818

33. Li S, Wang P, Wang J, Zhao J, Wang X, Liu T. Effect of mind-body exercise on risk factors for metabolic syndrome including insulin resistance: a meta-analysis. Front Endocrinol (Lausanne). 2024;15:1289254. doi: https://doi.org/10.3389/fendo.2024.1289254

34. Königstein K, Dipla K, Zafeiridis A. Training the Vessels: Molecular and Clinical Effects of Exercise on Vascular Health-A Narrative Review. Cells. 2023;12(21):2544. doi: https://doi.org/10.3390/cells12212544

35. Leandro CG, Ferreira E Silva WT, Lima-Silva AE. Covid-19 and Exercise-Induced Immunomodulation. Neuroimmunomodulation. 2020;27(1):75-78. doi: https://doi.org/10.1159/000508951

36. Alves HR, Lomba GSB, Gonçalves-de-Albuquerque CF, Burth P. Irisin, Exercise, and COVID-19. Front Endocrinol (Lausanne). 2022 Jun 17;13:879066. doi: https://doi.org/10.3389/fendo.2022.879066

37. Barkhordarian M, Behbood A, Ranjbar M, Rahimian Z, Prasad A. Overview of the cardio-metabolic impact of the COVID-19 pandemic. Endocrine. 2023;80(3):477-490. doi: https://doi.org/10.1007/s12020-023-03337-3

38. Lin AL, Vittinghoff E, Olgin JE, Pletcher MJ, Marcus GM. Body Weight Changes During Pandemic-Related Shelter-in-Place in a Longitudinal Cohort Study. JAMA Netw Open. 2021;4(3):e212536. doi: https://doi.org/10.1001/jamanetworkopen.2021.2536

39. Clemmensen C, Petersen MB, Sørensen TIA. Will the COVID-19 pandemic worsen the obesity epidemic? Nat Rev Endocrinol. 2020;16(9):469-470. doi: https://doi.org/10.1038/s41574-020-0387-z

40. Ippoliti F, Canitano N, Businaro R. Stress and obesity as risk factors in cardiovascular diseases: a neuroimmune perspective. J Neuroimmune Pharmacol. 2013;8(1):212-26. doi: https://doi.org/10.1007/s11481-012-9432-6

41. Joseph MS, Tincopa MA, Walden P, Jackson E, Conte ML, Rubenfire M. The Impact Of Structured Exercise Programs On Metabolic Syndrome And Its Components: A Systematic Review. Diabetes Metab Syndr Obes. 2019;12:2395-2404. doi: https://doi.org/10.2147/DMSO.S211776

42. Castro-Barquero S, Ruiz-León AM, Sierra-Pérez M, Estruch R, Casas R. Dietary Strategies for Metabolic Syndrome: A Comprehensive Review. Nutrients. 2020;12(10):2983. doi: https://doi.org/10.3390/nu12102983

43. Welsh A, Hammad M, Piña IL, Kulinski J. Obesity and cardiovascular health. Eur J Prev Cardiol. 2024;31(8):1026-1035. doi: https://doi.org/10.1093/eurjpc/zwae025

44. Oppert JM, Bellicha A, Ciangura C. Physical activity in management of persons with obesity. Eur J Intern Med. 2021;93:8-12. doi: https://doi.org/10.1016/j.ejim.2021.04.028

45. Kim KB, Choe H, Sung H. Effects of Individualized Exercise on Risk Factors of Metabolic Syndrome: A Scoping Review. J Obes Metab Syndr. 2024;33(1):20-26. doi: https://doi.org/10.7570/jomes23020

46. Deslippe AL, Soanes A, Bouchaud CC, Beckenstein H, Slim M, Plourde H, Cohen TR. Barriers and facilitators to diet, physical activity and lifestyle behavior intervention adherence: a qualitative systematic review of the literature. Int J Behav Nutr Phys Act. 2023;20(1):14. doi: https://doi.org/10.1186/s12966-023-01424-2

47. Conraads VM, Deaton C, Piotrowicz E, Santaularia N, Tierney S, et al. Adherence of heart failure patients to exercise: barriers and possible solutions: a position statement of the Study Group on Exercise Training in Heart Failure of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2012;14(5):451-8. doi: https://doi.org/10.1093/eurjhf/hfs048

48. Oh B, Cho B, Han MK, Choi H, Lee MN, Kang HC, Lee CH, Yun H, Kim Y. The Effectiveness of Mobile Phone-Based Care for Weight Control in Metabolic Syndrome Patients: Randomized Controlled Trial. JMIR Mhealth Uhealth. 2015;3(3):e83. doi: https://doi.org/10.2196/mhealth.4222

49. Kim CJ, Schlenk EA, Kang SW, Park JB. Effects of an internetbased lifestyle intervention on cardio-metabolic risks and stress in Korean workers with metabolic syndrome: a controlled trial. Patient Educ Couns. 2015;98(1):111-9. doi: https://doi.org/10.1016/j.pec.2014.10.013

50. Fappa E, Yannakoulia M, Ioannidou M, Skoumas Y, Pitsavos C, Stefanadis C. Telephone counseling intervention improves dietary habits and metabolic parameters of patients with the metabolic syndrome: a randomized controlled trial. Rev Diabet Stud. 2012;9(1):36-45. doi: https://doi.org/10.1900/RDS.2012.9.36

51. Jahangiry L, Montazeri A, Najafi M, Yaseri M, Farhangi MA. An interactive web-based intervention on nutritional status, physical activity and health-related quality of life in patient with metabolic syndrome: a randomized-controlled trial (The Red Ruby Study). Nutr Diabetes. 2017;7(1):e240. doi: https://doi.org/10.1038/nutd.2016.35

52. Assiri AM, Alamaa T, Elenezi F, Alsagheir A, Alzubaidi L, et al. Unveiling the Clinical Spectrum of Post-COVID-19 Conditions: Assessment and Recommended Strategies. Cureus. 2024;16(1):e52827. doi: https://doi.org/10.7759/cureus.52827


Review

For citations:


Avdeeva K.S., Petelina T.I., Redkina I.N., Sharoyan Yu.A., Gorbachevskii A.V. Cardiorehabilitation of metabolic syndrome in the aftermath of the COVID-19 pandemic. Obesity and metabolism. 2025;22(3):229-236. (In Russ.) https://doi.org/10.14341/omet13203

Views: 10


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)