Preview

МЕЖДИСЦИПЛИНАРНЫЕ КЛИНИЧЕСКИЕ РЕКОМЕНДАЦИИ «ЛЕЧЕНИЕ ОЖИРЕНИЯ И КОМОРБИДНЫХ ЗАБОЛЕВАНИЙ»

https://doi.org/10.14341/omet12714

Полный текст:

Аннотация

Клинические рекомендации уже давно вошли в число рабочих инструментов современного врача, помогая  ему быстро ориентироваться в наиболее эффективных доказанных методах лечения и профилактики  различных заболеваний, а также адаптировать эти методы к конкретным задачам своих больных и  добиваться максимальной персонализации лечения. Клинические рекомендации составляются  профессиональными некоммерческими ассоциациями и одобряются научным советом МЗ РФ, при этом  нередко одна рекомендация готовится двумя или даже тремя ассоциациями. Особенность предлагаемых  вашему вниманию рекомендаций в том, что в профилактику и лечение ожирения вовлекаются не только  эндокринологи, но и терапевты, кардиологи, гинекологи, гастроэнтерологи и врачи многих других  специальностей. Мультидисциплинарная рабочая группа представляет этот проект в многопрофильном журнале с целью объединения усилий нескольких профессиональных ассоциаций, что связано с необходимостью уделить внимание не только самому ожирению, но и коморбидным состояниям. Мы надеемся на конструктивную критику и разностороннее обсуждение проблемы на страницах нашего журнала.

Об авторах

И. И. Дедов
Национальный медицинский исследовательский центр эндокринологии
Россия

д.м.н., профессор, академик РАН

ResearcherID: D-3729-2014; Scopus Author ID: 7101843976; eLibrary SPIN: 5873-2280

Москва



М. В. Шестакова
Национальный медицинский исследовательский центр эндокринологии
Россия

д.м.н., профессор, академик РАН

eLibrary SPIN: 7584-7015

Москва



Г. А. Мельниченко
Национальный медицинский исследовательский центр эндокринологии
Россия

д.м.н., профессор, академик РАН

eLibrary SPIN: 8615-0038

Москва



Н. В. Мазурина
Национальный медицинский исследовательский центр эндокринологии
Россия
к.м.н.

Москва



Е. Н. Андреева
Национальный медицинский исследовательский центр эндокринологии
Россия

д.м.н., профессор

eLibrary SPIN: 1239-2937

Москва



И. З. Бондаренко
Национальный медицинский исследовательский центр эндокринологии
Россия

д.м.н

eLibrary SPIN: 4524-4803

Москва



З. Р. Гусова
Ростовский государственный медицинский университет
Россия

к.м.н.

eLibrary SPIN: 7295-5053

Ростов-на-Дону



Ф. Х. Дзгоева
Национальный медицинский исследовательский центр эндокринологии
Россия

к.м.н.

eLibrary SPIN: 9315-0722

Москва



М. С. Елисеев
Научно-исследовательский институт ревматологии имени В.А. Насоновой
Россия

к.м.н. 

eLibrary SPIN: 2524-7320

Москва


Е. В. Ершова
Национальный медицинский исследовательский центр эндокринологии
Россия

к.м.н.

eLibrary SPIN: 6728-3764

Москва



М. В. Журавлева
Научный центр экспертизы средств медицинского применения
Россия

д.м.н., профессор

eLibrary SPIN: 6267-9901

Москва



Т. А. Захарчук
Национальный медицинский исследовательский центр эндокринологии
Россия

к.м.н.

eLibrary SPIN: 6632-7230

Москва



В. А. Исаков
Федеральный исследовательский центр питания, биотехнологии и безопасности пищи
Россия

д.м.н., профессор

eLibrary SPIN: 1182-1646

Москва



М. В. Клепикова
Российская медицинская академия непрерывного профессионального образования
Россия

к.м.н.

eLibrary SPIN: 1718-1030

Москва



К. А. Комшилова
Национальный медицинский исследовательский центр эндокринологии
Россия

к.м.н. 

eLibrary SPIN: 2880-9644

Москва



В. С. Крысанова
Первый Московский государственный медицинский университет имени И.М. Сеченова Минздрава России (Сеченовский Университет)
Россия
eLibrary SPIN: 6433-2420

Москва


С. В. Недогода
Волгоградский государственный медицинский университет
Россия

д.м.н., профессор

eLibrary SPIN: 7005-7846

Волгоград



А, М. Новикова
Научно-исследовательский институт ревматологии имени В.А. Насоновой
Россия

eLibrary SPIN: 3821-1050

Москва



О. Д. Остроумова
Российская медицинская академия непрерывного профессионального образования
Россия

к.м.н.

eLibrary SPIN: 3910-6585

Москва



А. П. Переверзев
Российская медицинская академия непрерывного профессионального образования
Россия

к.м.н. 

eLibrary SPIN: 4842-3770

Москва



Р. В. Роживанов
Национальный медицинский исследовательский центр эндокринологии
Россия

д.м.н.

eLibrary SPIN: 8052-3310

Москва



Т. И. Романцова
Первый Московский государственный медицинский университет имени И.М. Сеченова Минздрава России (Сеченовский Университет)
Россия

д.м.н., профессор

eLibrary SPIN: 3855-5410

Москва



Л. А. Руяткина
Новосибирский государственный медицинский университет
Россия

д.м.н., профессор

eLibrary SPIN: 1895-7664

Новосибирск



А. С. Саласюк
Волгоградский государственный медицинский университет
Россия

к.м.н. 

eLibrary SPIN: 2651-2916

Волгоград



А. Н. Сасунова
Федеральный исследовательский центр питания, биотехнологии и безопасности пищи
Россия
eLibrary SPIN: 6237-1310

Москва



С. А. Сметанина
Тюменский государственный медицинский университет
Россия

д.м.н., профессор

eLibrary SPIN: 3842-6394

Тюмень



А. В. Стародубова
Федеральный исследовательский центр питания, биотехнологии и безопасности пищи
Россия

д.м.н., профессор

Москва



Л. А. Суплотова
Тюменский государственный медицинский университет
Россия

д.м.н., профессор

eLibrary SPIN: 1212-5397

Тюмень



О. Н. Ткачева
Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
Россия

д.м.н., профессор

SPIN: 6129-5809

Москва


Е. А. Трошина
Национальный медицинский исследовательский центр эндокринологии
Россия

д.м.н., профессор, член-корреспондент РАН

eLibrary SPIN: 8821-8990

Москва



М. Б. Хамошина
Российский университет дружбы народов
Россия

д.м.н., профессор

eLibrary SPIN: 6790-4499

Москва


С. М. Чечельницкая
Московский городской педагогический университет
Россия

д.м.н., профессор, член-корреспондент РАН

eLibrary SPIN: 8847-8731

Москва



Е. А. Шестакова
Национальный медицинский исследовательский центр эндокринологии
Россия

к.м.н.

eLibrary SPIN: 1124-7600

Москва



Е. В. Шереметьева
Национальный медицинский исследовательский центр эндокринологии
Россия

к.м.н.

eLibrary SPIN: 9413-5136

Москва



Список литературы

1. Must A. The Disease Burden Associated With Overweight and Obesity. JAMA. 1999;282(16):1523. doi: https://doi.org/10.1001/jama.282.16.1523

2. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health. 2009;9(1):88. doi: https://doi.org/10.1186/1471-2458-9-88

3. Lenz M, Richter T, Mühlhauser I. The Morbidity and Mortality Associated With Overweight and Obesity in Adulthood. Dtsch Aerzteblatt Online. 2009;106:641-648. doi: https://doi.org/10.3238/arztebl.2009.0641

4. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser. 1995. doi: https://doi.org/10.1002/(sici)1520-6300(1996)8:6<786::aidajhb11>3.0.co;2-i

5. Forbes GB, Reina JC. Adult lean body mass declines with age: Some longitudinal observations. Metabolism. 1970;19(9):653-663. doi: https://doi.org/10.1016/0026-0495(70)90062-4

6. Rolland-Cachera MF et al. Body mass index variations — centiles from birth to 87 years. European Journal of Clinical Nutrition. 1991;45:13-21.

7. Ross R, Shaw KD, Rissanen J, et al. Sex differences in lean and adipose tissue distribution by magnetic resonance imaging: anthropometric relationships. Am J Clin Nutr. 1994;59(6):1277-1285. doi: https://doi.org/10.1093/ajcn/59.6.1277

8. Shen W, Wang Z, Punyanita M, et al. Adipose Tissue Quantification by Imaging Methods: A Proposed Classification. Obes Res. 2003;11(1):5-16. doi: https://doi.org/10.1038/oby.2003.3

9. Alberti KGMM, Zimmet P, Shaw J. The metabolic syndrome—a new worldwide definition.Lancet. 2005;366(9491):1059-1062. doi: https://doi.org/10.1016/S0140-6736(05)67402-8

10. https://www.who.int/en/news-room/fact-sheets/detail/obesity-andoverweight

11. Lean MEJ, Han TS, Morrison CE. Waist circumference as a measure for indicating need for weight management. BMJ. 1995;311(6998):158-161. doi: https://doi.org/10.1136/bmj.311.6998.158

12. Han TS et al. Waist circumference relates to intra-abdominal fat mass better than waist:hip ratio in women. Proceedings of the Nutrition Society. 1995;54:152A.

13. Pouliot M-C, Després J-P, Lemieux S, et al. Waist circumference and abdominal sagittal diameter: Best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol. 1994;73(7):460-468. doi: https://doi.org/10.1016/0002-9149(94)90676-9

14. Wormser D, et al. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet. 2011;377(9771):1085–1095. doi: https://doi.org/10.1016/S0140-6736(11)60105-0

15. Fox CS, Massaro JM, Hoffmann U, et al. Abdominal Visceral and Subcutaneous Adipose Tissue Compartments. Circulation. 2007;116(1):39-48. doi: https://doi.org/10.1161/CIRCULATIONAHA.106.675355

16. Misra A, Jayawardena R, Anoop S. Obesity in South Asia: Phenotype, Morbidities, and Mitigation. Curr Obes Rep. 2019;8(1):43-52. doi: https://doi.org/10.1007/s13679-019-0328-0

17. Cheng L, Yan W, Zhu L, et al. Comparative analysis of IDF, ATPIII and CDS in the diagnosis of metabolic syndrome among adult inhabitants in Jiangxi Province, China. PLoS One. 2017;12(12):e0189046. doi: https://doi.org/10.1371/journal.pone.0189046

18. Nishida C, Barba C, Cavalli-Sforza T, et al. Appropriate bodymass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363(9403):157-163. doi: https://doi.org/10.1016/S0140-6736(03)15268-3

19. Pan W-H, Yeh W-T. How to define obesity? Evidence-based multiple action points for public awareness, screening, and treatment: an extension of Asian-Pacific recommendations. Asia Pac J Clin Nutr. 2008. doi: https://doi.org/10.6133/apjcn.2008.17.3.02

20. Nam GE, Park HS. Perspective on Diagnostic Criteria for Obesity and Abdominal Obesity in Korean Adults. J Obes Metab Syndr. 2018;27(3):134-142. doi: https://doi.org/10.7570/jomes.2018.27.3.134

21. Zeng Q, He Y, Dong S, et al. Optimal cut-off values of BMI, waist circumference and waist:height ratio for defining obesity in Chinese adults. Br J Nutr. 2014;112(10):1735-1744. doi: https://doi.org/10.1017/S0007114514002657

22. Jih J, Mukherjea A, Vittinghoff E, et al. Using appropriate body mass index cut points for overweight and obesity among Asian Americans. Prev Med (Baltim). 2014;65:1-6. doi: https://doi.org/10.1016/j.ypmed.2014.04.010

23. Garvey WT, Mechanick JI, Brett EM, et al. Reviewers of the AACE/ACE Obesity Clinical Practice Guidelines. American association of clinical endocrinologists and American college of endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. EndocrPract. 2016;22(3):1-203. doi: https://doi.org/10.4158/EP161365

24. Anothaisintawee T, Sansanayudh N, Thamakaison S, et al. Neck Circumference as an Anthropometric Indicator of Central Obesity in Patients with Prediabetes: A Cross-Sectional Study. Biomed Res Int. 2019;2019:1-8. doi: https://doi.org/10.1155/2019/4808541

25. Qureshi N, Hossain T, Hassan M, et al. Neck circumference as a marker of overweight and obesity and cutoff values for Bangladeshi adults. Indian J Endocrinol Metab. 2017;21(6):803. doi: https://doi.org/10.4103/ijem.IJEM_196_17

26. ADA. Standarts of medical care in diabetes-2019. Diabetes Care. 2019;24(1):s1-s187.

27. WHO. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia: Report of a WHO/IDF Consultation; 2006.

28. Дедов И.И., Шестакова М.В., Майоров А.Ю., и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом: Клинические рекомендации (Вып. 9) // Сахарный диабет. — 2019. — Т. 22. — №S1. — С. 1-144. doi: https://doi.org/10.14341/DM221S1

29. Piepoli MF, Hoes AW, Agewall S, et al. ESC Scientific Document Group. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European. Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 2016;37:2315-2381.

30. Российское медицинское общество по артериальной гипертонии. Рекомендации по ведению больных артериальной гипертонией с метаболическими нарушениями и сахарным диабетом 2-го типа // Системные гипертензии. — 2020. — Т. 17. — №1. — С. 7-45. doi: https://doi.org/10.26442/2075082X.2020.1.200051

31. Chazova IE, Shestakova MV, Zhernakova YV, et al. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19(1):41-47. doi: https://doi.org/10.1093/humrep/deh098

32. Kapur VK, Auckley DH, Chowdhuri S, et al. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med. 2017;13(03):479-504. doi: https://doi.org/10.5664/jcsm.6506

33. Garmendia Madariaga A, Santos Palacios S, Guillén-Grima F, Galofré JC. The Incidence and Prevalence of Thyroid Dysfunction in Europe: A Meta-Analysis. J Clin Endocrinol Metab. 2014;99(3):923-931. doi: https://doi.org/10.1210/jc.2013-2409

34. Michalaki MA, Vagenakis AG, Leonardou AS, et al. Thyroid Function in Humans with Morbid Obesity. Thyroid. 2006;16(1):73-78.

35. doi: https://doi.org/10.1089/thy.2006.16.73

36. Tiryakioglu O, Ugurlu S, Yalin S, et al. Screening for Cushing’s syndrome in obese patients. Clinics. 2010;65(1):9-13. doi: https://doi.org/10.1590/S1807-59322010000100003

37. Lammert A, Nittka S, Otto M, et al. Performance of the 1 mg dexamethasone suppression test in patients with severe obesity. Obesity. 2016;24(4):850-855. doi: https://doi.org/10.1002/oby.21442

38. Janković D, Wolf P, Anderwald C-H, et al. Prevalence of Endocrine Disorders in Morbidly Obese Patients and the Effects of Bariatric Surgery on Endocrine and Metabolic Parameters. Obes Surg. 2012;22(1):62-69. doi: https://doi.org/10.1007/s11695-011-0545-4

39. Catargi B, Rigalleau V, Poussin A, et al. Occult Cushing’s Syndrome in Type-2 Diabetes. J Clin Endocrinol Metab. 2003;88(12):5808-5813. doi: https://doi.org/10.1210/jc.2003-030254

40. Leibowitz G, Tsur A, Chayen SD, et al. Pre-clinical Cushing’s syndrome: an unexpected frequent cause of poor glycaemic control in obese diabetic patients. Clin Endocrinol (Oxf). 1996;44(6):717-722. doi: https://doi.org/10.1046/j.1365-2265.1996.737558.x

41. Steffensen C, Pereira AM, Dekkers OM, Jørgensen JOL. Diagnosis of endocrine disease: Prevalence of hypercortisolism in type 2 diabetes patients: a systematic review and meta-analysis. Eur J Endocrinol. 2016;175(6):R247-R253. doi: https://doi.org/10.1530/EJE-16-0434

42. Caetano MSS, Silva RDC, Kater CE. Increased diagnostic probability of subclinical cushing’s syndrome in a population sample of overweight adult patients with type 2 diabetes mellitus. Arq Bras Endocrinol Metabol. 2007;51(7):1118-1127. doi: https://doi.org/10.1590/S0004-27302007000700015

43. Fleseriu M, Ludlam WH, Teh SH, Yedinak CG, Deveney C, Sheppard BC. Cushing’s syndrome might be underappreciated in patients seeking bariatric surgery: a plea for screening. Surg Obes Relat Dis. 2009;5(1):116-119. doi: https://doi.org/10.1016/j.soard.2008.09.011

44. Savastano S, Pivonello R, Colao A. Bariatric surgery for obesity and hidden Cushing syndrome. Surg Obes Relat Dis. 2009;5(1):121-122. doi: https://doi.org/10.1016/j.soard.2008.07.006

45. Loriaux DL. Diagnosis and Differential Diagnosis of Cushing’s Syndrome. N Engl J Med. 2017;376(15):1451-1459. doi: https://doi.org/10.1056/NEJMra1505550

46. Dhindsa S, Ghanim H, Batra M, Dandona P. Hypogonadotropic Hypogonadism in Men With Diabesity. Diabetes Care. 2018;41(7):1516-1525. doi: https://doi.org/10.2337/dc17-2510

47. Auriemma RS, De Alcubierre D, Pirchio R, et al. The effects of hyperprolactinemia and its control on metabolic diseases. Expert Rev Endocrinol Metab. 2018;13(2):99-106. doi: https://doi.org/10.1080/17446651.2018.1434412

48. Evaluation and Management of Adult Hypoglycemic Disorders: An Endocrine Society Clinical Practice Guideline. Journal of Clinical Endocrinology & Metabolism. 2009;94(3):709-728.

49. van der Klaauw AA, Farooqi IS. The Hunger Genes: Pathways to Obesity. Cell. 2015;161(1):119-132. doi: https://doi.org/10.1016/j.cell.2015.03.008

50. Koves IH, Roth C. Genetic and Syndromic Causes of Obesity and its Management. Indian J Pediatr. 2018;85(6):478-485.

51. doi: https://doi.org/10.1007/s12098-017-2502-2

52. Must A. Reduction in the Incidence of Type 2 Diabetes with Lifestyle Intervention or Metformin. N Engl J Med. 2002;346(6):393-403. doi: https://doi.org/10.1056/NEJMoa012512

53. Blundell JE, Dulloo AG, Salvador J, Frühbeck G. Beyond BMI - Phenotyping the Obesities. Obes Facts. 2014;7(5):322-328. doi: https://doi.org/10.1159/000368783

54. Schwarz P, Lindström J, Kissimova-Scarbeck K, et al. The European Perspective of Type 2 Diabetes Prevention: Diabetes in Europe - Prevention Using Lifestyle, Physical Activity and Nutritional Intervention (DE-PLAN) Project. Exp Clin Endocrinol Diabetes. 2008;116(03):167-172. doi: https://doi.org/10.1055/s-2007-992115

55. Hainer V, Toplak H, Mitrakou A. Treatment Modalities of Obesity: What fits whom? Diabetes Care. 2008;31(2):S269-S277. doi: https://doi.org/10.2337/dc08-s265.

56. Sampsel S, May J. Assessment and Management of Obesity and Comorbid Conditions. Dis Manag. 2007;10(5):252-265. doi: https://doi.org/10.1089/dis.2007.105712

57. Jensen MD, Ryan DH, Apovian CM, et al. 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults. J Am Coll Cardiol. 2014;63(25):2985-3023. doi: https://doi.org/10.1016/j.jacc.2013.11.004

58. World Health Organization: Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation (WHO Technical Report Series 894). [Internet]. Geneva: 1998. www.who.int/nutrition/publications/obesity/WHO_TRS_894/en/ (cited: 2015 November 30).

59. Cefalu WT, Bray GA, Home PD, et al. Advances in the Science, Treatment, and Prevention of the Disease of Obesity: Reflections From a Diabetes Care Editors’ Expert Forum. Diabetes Care. 2015;38(8):1567-1582. doi: https://doi.org/10.2337/dc15-1081

60. Garvey WT, Mechanick JI, Brett EM, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Comprehensive Clinical Practice Guidelines Formedical Care of Patients with Obesity. Endocr Pract. 2016;22:1-203. doi: https://doi.org/10.4158/EP161365.GL

61. Shai I, Schwarzfuchs D, Henkin Y, et al. Weight Loss with a LowCarbohydrate, Mediterranean, or Low-Fat Diet. N Engl J Med. 2008;359(3):229-241. doi: https://doi.org/10.1056/NEJMoa0708681

62. Dernini S, Berry EM. Mediterranean Diet: From a Healthy Diet to a Sustainable Dietary Pattern. Front Nutr. 2015;2. doi: https://doi.org/10.3389/fnut.2015.00015

63. Estruch R, Ros E, Salas-Salvadó J, et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N Engl J Med. 2018;378(25):e34. doi: https://doi.org/10.1056/NEJMoa1800389.

64. Avenell A, Brown TJ, McGee MA, et al. What are the long-term benefits of weight reducing diets in adults? A systematic review of randomized controlled trials. J Hum Nutr Diet. 2004;17(4):317-335. doi: https://doi.org/10.1111/j.1365-277X.2004.00531.x

65. Dansinger ML, Gleason JA, Griffith JL, Selker HP, Schaefer EJ. Comparison of the Atkins, Ornish, Weight Watchers, and Zone Diets for Weight Loss and Heart Disease Risk Reduction. JAMA. 2005;293(1):43. doi: https://doi.org/10.1001/jama.293.1.43

66. Sharma M. Behavioural interventions for preventing and treating obesity in adults. Obes Rev. 2007;8(5):441-449. doi: https://doi.org/10.1111/j.1467-789X.2007.00351.x

67. Lang A, Froelicher ES. Management of Overweight and Obesity in Adults: Behavioral Intervention for Long-Term Weight Loss and Maintenance. Eur J Cardiovasc Nurs. 2006;5(2):102-114. doi: https://doi.org/10.1016/j.ejcnurse.2005.11.002

68. Moffitt R, Haynes A, Mohr P. Treatment Beliefs and Preferences for Psychological Therapies for Weight Management. J Clin Psychol. 2015;71(6):584-596. doi: https://doi.org/10.1002/jclp.22157

69. Willis LH, Slentz CA, Bateman LA, et al. Effects of aerobic and/or resistance training on body mass and fat mass in overweight or obese adults. J Appl Physiol. 2012;113(12):1831-1837. doi: https://doi.org/10.1152/japplphysiol.01370.2011

70. Geliebter A, Christopher N, Ochner CN, et al. Obesity-related hormones and metabolic risk factors: a randomized trial of diet plus either strength or aerobic training versus diet alone in overweight participants. J Diabetes Obes. 2015;1:1–7.

71. Poirier P, Després J-P. Exercise in weight management of obesity. Cardiol Clin. 2001;19(3):459-470. doi: https://doi.org/10.1016/S0733-8651(05)70229-0

72. Chin S ‐H., Kahathuduwa CN, Binks M. Physical activity and obesity: what we know and what we need to know*. Obes Rev. 2016;17(12):1226-1244. doi: https://doi.org/10.1111/obr.12460

73. K. Stephens S, J. Cobiac L, Veerman JL. Improving diet and physical activity to reduce population prevalence of overweight and obesity:

74. An overview of current evidence. Prev Med (Baltim). 2014;62:167-178. doi: https://doi.org/10.1016/j.ypmed.2014.02.008

75. Bays HE, González-Campoy JM, Bray GA, et al. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev Cardiovasc Ther. 2008;6(3):343-368. doi: https://doi.org/10.1586/14779072.6.3.343

76. Cullen KW, Baranowski T, Owens E, Marsh T, Rittenberry L, de Moor C. Availability, Accessibility, and Preferences for Fruit, 100% Fruit Juice, and Vegetables Influence Children’s Dietary Behavior. Heal Educ Behav. 2003;30(5):615-626. doi: https://doi.org/10.1177/1090198103257254

77. Hanson NI, Neumark-Sztainer D, Eisenberg ME, et al. Associations between parental report of the home food environment and adolescent intakes of fruits, vegetables and dairy foods. Public Health Nutr. 2005;8(1):77-85. doi: https://doi.org/10.1079/PHN2005661

78. Duffey KJ, Gordon-Larsen P, Jacobs DR, et al. Differential associations of fast food and restaurant food consumption with 3-y change in body mass index: the Coronary Artery Risk Development in Young Adults Study. Am J Clin Nutr. 2007;85(1):201-208. doi: https://doi.org/10.1093/ajcn/85.1.201

79. Wing RR, Tate DF, Gorin AA, et al. A Self-Regulation Program for Maintenance of Weight Loss. N Engl J Med. 2006;355(15):1563-1571.

80. doi: https://doi.org/10.1056/NEJMoa061883

81. Schmidt ME, Haines J, O’Brien A, et al. Systematic Review of Effective Strategies for Reducing Screen Time Among Young Children. Obesity. 2012;20(7):1338-1354. doi: https://doi.org/10.1038/oby.2011.348

82. Gonzalez-Campoy JM, Castorino K, Ebrahim A, et al. Clinical Practice Guidelines for Healthy Eating for the Prevention and Treatment of Metabolic and Endocrine Diseases in Adults: Cosponsored by the American Association of Clinical Endocrinologists/ The American College of Endocrinology and the Obesity Soci. Endocr Pract. 2013;19(15):1-82. doi: https://doi.org/10.4158/EP13155.GL

83. AACE/ACE Obesity Task Force. AACE/ACE Position Statement on the Prevention, Diagnosis, and Treatment of Obesity. Endocr Pract.

84. ;4:297-350.

85. Seagle HM, Strain GW, Makris A, Reeves RS. Position of the American Dietetic Association: Weight Management. J Am Diet Assoc. 2009;109(2):330-346. doi: https://doi.org/10.1016/j.jada.2008.11.041

86. 2006 Adult Weight Management EvidenceBased Nutrition Practice Guideline. Available at: https://www.andeal.org/topic.cfm?cat=2798&auth=1.2009

87. Afshin A, Sur PJ, Fay KA, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958-1972. doi: https://doi.org/10.1016/S0140-6736(19)30041-8

88. Yancy WS, Olsen MK, Guyton JR, Bakst RP, Westman EC. A LowCarbohydrate, Ketogenic Diet versus a Low-Fat Diet To Treat Obesity and Hyperlipidemia. Ann Intern Med. 2004;140(10):769. doi: https://doi.org/10.7326/0003-4819-140-10-200405180-00006

89. Wadden TA, West DS, Neiberg RH, et al. One-year Weight Losses in the Look AHEAD Study: Factors Associated With Success. Obesity. 2009;17(4):713-722. doi: https://doi.org/10.1038/oby.2008.637

90. Wadden TA, Butryn ML, Byrne KJ. Efficacy of Lifestyle Modification for Long-Term Weight Control. Obes Res. 2004;12(S12):151S-162S. doi: https://doi.org/10.1038/oby.2004.282

91. Gonzalez-Campoy JM, Castorino K, Ebrahim A, et al. The Diabetes Prevention Program (DPP): Description of lifestyle intervention. Diabetes Care. 2002;25(12):2165-2171. doi: https://doi.org/10.2337/diacare.25.12.2165

92. Perri MG, McAllister DA, Gange JJ, et al. Effects of four maintenance programs on the long-term management of obesity. J Consult Clin Psychol. 1988;56(4):529-534. doi: https://doi.org/10.1037/0022-006X.56.4.529

93. Sbrocco T, Nedegaard RC, Stone JM, Lewis EL. Behavioral choice treatment promotes continuing weight loss: Preliminary results of a cognitive–behavioral decision-based treatment for obesity. J Consult Clin Psychol. 1999;67(2):260-266. doi: https://doi.org/10.1037/0022-006X.67.2.260

94. The Practical Guide : Identification, Evaluation, and Treatment of Overweight and Obesity in Adults. [Bethesda, Md.] :National Institutes of Health, National Heart, Lung, and Blood Institute, NHLBI Obesity Education Initiative, North American Association for the Study of Obesity, 2000.

95. NHLBI Obesity Education Initiative Expert Panel on the Identification, Evaluation, and Treatment of Obesity in Adults (US). Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults: The Evidence Report. Bethesda (MD): National Heart, Lung, and Blood Institute; 1998 Sep. Available from: https://www.ncbi.nlm.nih.gov/books/NBK2003/

96. Biddle SJH, Bengoechea García E, Pedisic Z, et al. Screen Time, Other Sedentary Behaviours, and Obesity Risk in Adults: A Review of Reviews. Curr Obes Rep. 2017;6(2):134-147. doi: https://doi.org/10.1007/s13679-017-0256-9

97. Heymsfield SB, Wadden TA. Mechanisms, Pathophysiology, and Management of Obesity. Longo DL, ed. N Engl J Med. 2017;376(3):254-266. doi: https://doi.org/10.1056/NEJMra1514009

98. Guh DP, Zhang W, Bansback N, et al. The incidence of comorbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health. 2009;9:88. doi: https://doi.org/10.1186/1471-2458-9-88

99. Lenz M, Richter T, Mühlhauser I. The Morbidity and Mortality Associated With Overweight and Obesity in Adulthood. Dtsch Aerzteblatt Online. 2009;106:641-648. doi: https://doi.org/10.3238/arztebl.2009.0641

100. Avenell A, Brown TJ, McGee MA, et al. What are the long-term benefits of weight reducing diets in adults? A systematic review of randomized controlled trials. J Hum Nutr Diet. 2004;17(4):317-335. doi: https://doi.org/10.1111/j.1365-277X.2004.00531.x

101. Dansinger ML, Gleason JA, Griffith JL. et al. Comparison of the Atkins, Ornish, Weight Watchers, and Zone Diets for Weight Loss and Heart Disease Risk ReductionA Randomized Trial. JAMA. 2005;293(1):43-53. doi: https://doi.org/10.1001/jama.293.1.43

102. Stephens SK, Cobiac LJ, Veerman JL. Improving diet and physical activity to reduce population prevalence of overweight and obesity: An overview of current evidence. Prev Med (Baltim). 2014;62:167-178. doi: https://doi.org/10.1016/j.ypmed.2014.02.008

103. Garvey WT, Mechanick JI, Brett EM, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Comprehensive Clinical Practice Guidelines Formedical Care of Patients with Obesity. Endocr Pract. 2016;22:1-203. doi: https://doi.org/10.4158/EP161365.GL

104. Rucker D, Padwal R, Li SK, et al. Long term pharmacotherapy for obesity and overweight: updated meta-analysis. BMJ. 2007;335(7631):1194-1199. doi: https://doi.org/10.1136/bmj.39385.413113.25

105. Avenell A, Broom J, Brown T, et al. Systematic review of the longterm effects and economic consequences of treatments for obesity and implications for health improvement. Health Technol Assess (Rockv). 2004;8(21). doi: https://doi.org/10.3310/hta8210.

106. Garvey WT, Mechanick JI, Brett EM, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Comprehensive Clinical Practice Guidelines Formedical Care of Patients with Obesity. Endocr Pract. 2016;22(3):1-203. doi: https://doi.org/10.4158/EP161365.GL

107. Jensen MD, Ryan DH, Apovian CM, et al. 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults. J Am Coll Cardiol. 2014;63(25):2985-3023. doi: https://doi.org/10.1016/j.jacc.2013.11.004

108. Jensen MD, Ryan DH, Apovian CM, et al. 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults. Circulation. 2014;129(25 suppl 2):S102-S138. doi: https://doi.org/10.1161/01.cir.0000437739.71477.ee

109. Bray GA. Medical treatment of obesity: The past, the present and the future. Best Pract Res Clin Gastroenterol. 2014;28(4):665-684. doi: https://doi.org/10.1016/j.bpg.2014.07.015

110. Pucci A, Finer N. New Medications for Treatment of Obesity: Metabolic and Cardiovascular Effects. Can J Cardiol. 2015;31(2):142-152. doi: https://doi.org/10.1016/j.cjca.2014.11.010

111. Torgerson JS, Hauptman J, Boldrin MN, Sjostrom L. XENical in the Prevention of Diabetes in Obese Subjects (XENDOS) Study: A randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care. 2004;27(1):155-161. doi: https://doi.org/10.2337/diacare.27.1.155

112. Toplak H, Ziegler O, Keller U, et al. X-PERT: weight reduction with orlistat in obese subjects receiving a mildly or moderately reduced-energy diet. Early response to treatment predicts weight maintenance. Diabetes, Obes Metab. 2005;7(6):699-708. doi: https://doi.org/10.1111/j.1463-1326.2005.00483.x

113. Williamson DF, Pamuk E, Thun M, et al. Prospective Study of Intentional Weight Loss and Mortality in Overweight White Men Aged 40-64 Years. Am J Epidemiol. 1999;149(6):491-503. doi: https://doi.org/10.1093/oxfordjournals.aje.a009843

114. James WPT, Astrup A, Finer N, et al. Effect of sibutramine on weight maintenance after weight loss: a randomised trial. Lancet. 2000;356(9248):2119-2125. doi: https://doi.org/10.1016/S0140-6736(00)03491-7

115. Dedov II, Melnichenko GA, Troshina EA, et al. Body Weight Reduction Associated with the Sibutramine Treatment: Overall Results of the PRIMAVERA Primary Health Care Trial. Obes Facts. 2018;11(4):335-343. doi: https://doi.org/10.1159/000488880

116. Дедов И.И., Мельниченко Г.А., Романцова Т.И. Стратегия управления ожирением: итоги Всероссийской наблюдательной программы «ПримаВера» // Ожирение и метаболизм. — 2016. — Т.13 — №1. — С. 36-44. doi: https://doi.org/10.14341/omet2016136-44

117. Knowler WC, Barrett-Connor E, Fowler SE, et al. Diabetes Prevention Program Research Group: Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002; 346:393–403. doi: https://doi.org/10.1056/NEJMoa012512

118. Pi-Sunyer X, Astrup A, Fujioka K, et al. A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management. N Engl J Med.

119. ;373(1):11-22. doi: https://doi.org/10.1056/NEJMoa1411892

120. le Roux CW, Astrup A, Fujioka K, et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet. 2017;389(10077):1399-1409. doi: https://doi.org/10.1016/s0140-6736(17)30069-7

121. Blackman A, Foster GD, Zammit G, et al. Effect of liraglutide 3.0 mg in individuals with obesity and moderate or severe obstructive sleep apnea: the SCALE Sleep Apnea randomized clinical trial. Int J Obes (Lond). 2016;40(8):1310-1319. doi: https://doi.org/10.1038/ij o.2016.52

122. Wadden TA, Hollander P, Klein S et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: The SCALE Maintenance randomized study. International Journal of Obesity. 2013; 37:1443-1451. doi: https://doi.org/10.1038/ijo.2013.120

123. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311-22. doi: https://doi.org/10.1056/NEJMoa1603827

124. Bray GA, Kim KK, Wilding JPH, et al. Obesity: a chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes Rev. 2017;18(7):715-723. doi: https://doi.org/10.1111/obr.12551.

125. Magkos F, Fraterrigo G, Yoshino J. et al. Effects of Moderate and Subsequent Progressive Weight Loss on Metabolic Function and Adipose Tissue Biology in Humans with Obesity. Cell Metab, 2016;23:1-11. doi: https://doi.org/10.1016/j.cmet.2016.02.005

126. McGuire MT, Wing RR, Hill JO. The prevalence of weight loss maintenance among American adults. Int J Obes Relat Metab Disord. 1999;23:1314-1319. doi: https://doi.org/10.1038/sj.ijo.0801075

127. Dulloo AG, Jacquet J, Girardier L. Poststarvation hyperphagia and body fat overshooting in humans: a role for feedback signals from lean and fat tissues. Am J Clin Nutr. 1997;65(3):717-723. doi: https://doi.org/10.1093/ajcn/65.3.717

128. Roumans NJT, Vink RG, Bouwman FG, et al. Weight-loss stress in subcutaneous adipose tissue is related to weight regain. Int J Obes (Lond). 2017;41(6):894-901. doi: https://doi.org/10.1038/ijo.2016.221

129. Crujeiras AB, Goyenechea E, Abete I, et al. Weight Regain after a Diet-Induced Loss Is Predicted by Higher Baseline Leptin and Lower Ghrelin Plasma Levels. J Clin Endocrinol Metab. 2010;95(11):5037-5044. doi: https://doi.org/10.1210/jc.2009-2566

130. Hinkle W, Cordell M, Leibel R, et al. Effects of reduced weight maintenance and leptin repletion on functional connectivity of the hypothalamus in obese humans. PLoS One. 2013;8:e59114. doi: https://doi.org/10.1371/journal.pone.0059114.

131. Sumithran P, Prendergast LA, Delbridge E, et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med . 2011;365:1597-1604. doi: https://doi.org/10.1056/NEJMoa1105816

132. Kasher-Meron M, Youn DY, Zong H, Pessin JE. Lipolysis defect in white adipose tissue and rapid weight regain. Am J Physiol Metab. 2019;317(2):E185-E193. doi: https://doi.org/10.1152/ajpendo.00542.2018

133. Sparti A, DeLany JP, de la Bretonne JA, et al. Relationship between resting metabolic rate and the composition of the fat-free mass. Metabolism. 1997;46:1225-1230. doi: https://doi.org/10.1016/S0026-0495(97)90222-5

134. Leibel RL, Rosenbaum M, Hirsch J. Changes in Energy Expenditure Resulting from Altered Body Weight. N Engl J Med. 1995;332(10):621-628. doi: https://doi.org/10.1056/NEJM199503093321001

135. Rosenbaum M, Hirsch J, Gallagher DA, Leibel RL. Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am J Clin Nutr. 2008;88:906-912. doi: https://doi.org/10.1093/ajcn/88.4.906

136. Wing RR, Hill JO. Successful weight loss maintenance. Annu Rev Nutr 2001;21:323-341. doi: https://doi.org/10.1146/annurev.nutr.21.1.323

137. DeJesus RS, Bauer KW, Bradley DP, et al. Experience and expectations of patients on weight loss: The Learning Health system Network experience. Obesity Science & Practice. 2019;5(5):479-486. doi: https://doi.org/10.1002/osp4.364

138. Preuss H, Leister L, Pinnow M, Legenbauer T. Inhibitory control pathway to disinhibited eating: A matter of perspective? Appetite. 2019;141(2):104297. doi: https://doi.org/10.1016/j.appet.2019.05.028

139. Vink RG, Roumans NJT, Arkenbosch LAJ, et al. The effect of rate of weight loss on long-term weight regain in adults with overweight and obesity. Obesity. 2016;24(2):321-327. doi: https://doi.org/10.1002/oby.21346

140. Jensen MD, Ryan DH, Apovian CM, et al. 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults. Circulation. 2014;129(25 suppl 2):S102-S138. doi: https://doi.org/10.1161/01.cir.0000437739.71477.ee

141. Bray GA, Heisel WE, Afshin A, et al. The Science of Obesity Management: An Endocrine Society Scientific Statement. Endocr Rev. 2018;39(2):79-132. doi: https://doi.org/10.1210/er.2017-00253

142. Aller EE, Larsen TM, Claus H, et al. Weight loss maintenance in overweight subjects on ad libitum diets with high or low protein content and glycemic index: the DIOGENES trial 12-month results. Int. J. Obes. (Lond.). 2014;38:1511-1517. doi: https://doi.org/10.1038/ijo.2014.52

143. Varkevisser RDM, van Stralen MM, Kroeze W, et al. Determinants of weight loss maintenance: a systematic review. Obes Rev. 2019;20(2):171-211. doi: https://doi.org/10.1111/obr.12772

144. Schoeller DA, Shay K, Kushner RF. et al. How much physical activity is needed to minimize weight gain in previously obese women? Am J Clin Nutr. 1997;66(3):551-556. doi: https://doi.org/10.1093/ajcn/66.3.551.

145. Ostendorf DM, Caldwell AE, Creasy SA, et al. Physical Activity Energy Expenditure and Total Daily Energy Expenditure in Successful Weight Loss Maintainers. Obesity (Silver Spring). 2019;27(3):496-504. doi: https://doi.org/10.1002/oby.22373

146. James WTP, Astrup A, Finer N, et al. The STORM Study Group. Effect of sibutramine on weight maintenance after weight loss: a randomised trial. Lancet. 2000;356:2119–2125. doi: https://doi.org/10.1016/S0140-6736(00)03491-7

147. Richelsen B, Tonstad S, Rössner S, et al. Effect of orlistat on weight regain and cardiovascular risk factors following a very-lowenergy diet in abdominally obese patients: a 3-year randomized, placebo-controlled study. Diabetes Care. 2007;30(1):27-32. doi: https://doi.org/10.2337/dc06-0210

148. Wadden TA, Hollander P, Klein S, et al. Weight maintenance and additional weight loss with liraglutide after lowcalorie-diet-induced weight loss: the SCALE Maintenance randomized study. Int J Obes (Lond). 2013;37(11):1443-51. doi: https://doi.org/10.1038/ijo.2013.120.

149. Dutton GR, Gowey MA, Tan F. Comparison of an alternative schedule of extended care contacts to a self-directed control: a randomized trial of weight loss maintenance. Int J Behav Nutr Phys Act. 2017;14(1):107. doi: https://doi.org/10.1186/s12966-017-0564-1

150. Wing RR, Tate DF, Gorin AA, et al. A Self-Regulation Program for Maintenance of Weight Loss. N Engl J Med. 2006;355(15):1563-1571. doi: https://doi.org/10.1056/NEJMoa061883

151. Ostendorf DM, Lyden K, Pan Z, et al. Objectively measured physical activity and sedentary behavior in successful weight loss maintainers. Obesity (Silver Spring). 2018;26(1):53-60. doi: https://doi.org/10.1002/oby.22052

152. Crain AL, Sherwood NE, Martinson BC, Jeffery RW. Mediators of Weight Loss Maintenance in the Keep It Off Trial. Ann Behav Med. 2018;52(1):9-18. doi: https://doi.org/10.1007/s12160-017-9917-x

153. Kim K-B, Kim K, Kim C, et al. Effects of Exercise on the Body Composition and Lipid Profile of Individuals with Obesity: A Systematic Review and Meta-Analysis. J Obes Metab Syndr. 2019;28(4):278-294. doi: https://doi.org/10.7570/jomes.2019.28.4.278

154. Thorogood A, Mottillo S, Shimony A, et al. Isolated Aerobic Exercise and Weight Loss: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Am J Med. 2011;124(8):747-755. doi: https://doi.org/10.1016/j.amjmed.2011.02.037

155. Johns DJ, Hartmann-Boyce J, Jebb SA, Aveyard P. Diet or Exercise Interventions vs Combined Behavioral Weight Management Programs: A Systematic Review and Meta-Analysis of Direct Comparisons. J Acad Nutr Diet. 2014;114(10):1557-1568. doi: https://doi.org/10.1016/j.jand.2014.07.005

156. Hamasaki H. Physical Activity and Obesity in Adults. In: Adiposity - Epidemiology and Treatment Modalities. Vol 13. InTech; 2017:36-44. doi: https://doi.org/10.5772/64672

157. Conn VS, Hafdahl A, Phillips LJ, et al. Impact of Physical Activity Interventions on Anthropometric Outcomes: Systematic Review and Meta-Analysis. J Prim Prev. 2014;35(4):203-215. doi: https://doi.org/10.1007/s10935-014-0352-5

158. Fildes A, Charlton J, Rudisill C, et al. Probability of an Obese Person Attaining Normal Body Weight: Cohort Study Using Electronic Health Records. Am J Public Health. 2015;105(9):e54-e59. doi: https://doi.org/10.2105/AJPH.2015.302773

159. Ortega FB, Lavie CJ, Blair SN. Obesity and Cardiovascular Disease. Circ Res. 2016;118(11):1752-1770. doi: https://doi.org/10.1161/CIRCRESAHA.115.306883

160. Dunn AL. Effectiveness of Lifestyle Physical Activity Interventions to Reduce Cardiovascular Disease. Am J Lifestyle Med. 2009;3(1):11S-18S. doi: https://doi.org/10.1177/1559827609336067

161. Kushner RF. Weight Loss Strategies for Treatment of Obesity. Prog Cardiovasc Dis. 2014;56(4):465-472. doi: https://doi.org/10.1016/j.pcad.2013.09.005

162. Obert J, Pearlman M, Obert L, Chapin S. Popular Weight Loss Strategies: a Review of Four Weight Loss Techniques. Curr Gastroenterol Rep. 2017;19(12):61. doi: https://doi.org/10.1007/s11894-017-0603-8

163. Jelleyman C, Yates T, O’Donovan G, et al. The effects of highintensity interval training on glucose regulation and insulin resistance: a meta-analysis. Obes Rev. 2015;16(11):942-961. doi: https://doi.org/10.1111/obr.12317

164. Wewege M, van den Berg R, Ward RE, Keech A. The effects of highintensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. Obes Rev. 2017;18(6):635-646. doi: https://doi.org/10.1111/obr.12532

165. Türk Y, Theel W, Kasteleyn MJ, et al. High intensity training in obesity: a Meta-analysis. Obes Sci Pract. 2017;3(3):258-271. doi: https://doi.org/10.1002/osp4.109

166. De Feo P. Is high-intensity exercise better than moderate-intensity exercise for weight loss? Nutr Metab Cardiovasc Dis. 2013;23(11):1037-1042. doi: https://doi.org/10.1016/j.numecd.2013.06.002

167. Sword DO. Exercise as a Management Strategy for the Overweight and Obese. Strength Cond J. 2012;34(5):47-55. doi: https://doi.org/10.1519/SSC.0b013e31826d9403

168. Fogelholm M, Stallknecht B, Van Baak M. ECSS position statement: Exercise and obesity. Eur J Sport Sci. 2006;6:15–24. doi: https://doi.org/10.1080/17461390600563085

169. Дедов И.И., Шестакова М.В., Майоров А.Ю. и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом: Клинические рекомендации (Вып. 9) // Сахарный диабет. — 2019. — Т. 22. — №S1. — С. 1-144 doi: https://doi.org/10.14341/DM221S1

170. Gabir MM, Hanson RL, Dabelea D, et al. The 1997 American Diabetes Association and 1999 World Health Organization criteria for hyperglycemia in the diagnosis and prediction of diabetes. Diabetes Care. 2000;23(8):1108-1112. doi: https://doi.org/10.2337/diacare.23.8.1108

171. Simmons RK, Griffin SJ, Witte DR et al. Effect of population screening for type 2 diabetes and cardiovascular risk factors on mortality rate and cardiovascular events: a controlled trial among 1,912,392 Danish adults. Diabetologia. 2017;60(11):2183-2191. doi: https://doi.org/10.1007/s00125-017-4323-2

172. Simmons RK, Griffin SJ, Lauritzen T, Sandbæk A. Effect of screening for type 2 diabetes on risk of cardiovascular disease and mortality: a controlled trial among 139,075 individuals diagnosed with diabetes in Denmark between 2001 and 2009. Diabetologia. 2017;60(11):2192-2199. doi: https://doi.org/10.1007/s00125-017-4299-y

173. Sortsø C, Komkova A, Sandbæk A, et al. Effect of screening for type 2 diabetes on healthcare costs: a register-based study among 139,075 individuals diagnosed with diabetes in Denmark between 2001 and 2009. Diabetologia. 2018;61:1306. doi: https://doi.org/10.1007/s00125-018-4594-2

174. Mottalib A, Kasetty M, Mar JY, et al. Weight Management in Patients with Type 1 Diabetes and Obesity. Curr Diab Rep. 2017;17:92. doi: https://doi.org/10.1007/s11892-017-0918-8

175. Дедов И.И., Мельниченко Г.А., Шестакова М.В., и др. Лечение морбидного ожирения у взрослых // Ожирение и метаболизм. — 2018. — Т. 15. — №1. — С. 53-70. doi: https://doi.org/10.14341/omet2018153-70

176. Wing RR, Lang W, Wadden TA, et al. Benefits of Modest Weight Loss in Improving Cardiovascular Risk Factors in Overweight and Obese Individuals With Type 2 Diabetes. Diabetes Care. 2011;34(7):1481-1486. doi: https://doi.org/10.2337/dc10-2415

177. Johnston BC, Kanters S, Bandayrel K, et al. Comparison of Weight Loss Among Named Diet Programs in Overweight and Obese Adults. A Meta-analysis. JAMA. 2014;312(9):923-933. doi: https://doi.org/10.1001/jama.2014.10397

178. Sacks FM, Bray GA, Carey VJ, et al. Comparison of Weight-Loss Diets with Different Compositions of Fat, Protein, and Carbohydrates. N Engl J Med. 2009;360(9):859-873. doi: https://doi.org/10.1056/NEJMoa0804748

179. Bell KJ, Barclay AW, Petocz P, et al. Efficacy of carbohydrate counting in type 1 diabetes: a systematic review and metaanalysis. Lancet Diabetes Endocrinol. 2014;2(2):133-140. doi: https://doi.org/10.1016/S2213-8587(13)70144-X

180. D’Alessandro A, De Pergola G. Mediterranean Diet Pyramid: A Proposal for Italian People. Nutrients. 2014;6:4302-4316. doi: https://doi.org/10.3390/nu6104302.

181. Estruch R, Ros E, Salas-Salvadó J, et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N Engl J Med. 2018;378(25):e34. doi: https://doi.org/10.1056/NEJMoa1800389

182. Esposito K, Maiorino MI, Bellastella G, et al. A journey into a Mediterranean diet and type 2 diabetes: a systematic review with meta-analyses. BMJ Open. 2015;5(8):e008222. doi: https://doi.org/10.1136/bmjopen-2015-008222

183. Durrer Schutz D, Busetto L, Dicker D, et al. European Practical and Patient-Centred Guidelines for Adult Obesity Management in Primary Care. Obes Facts. 2019;12(1):40-66. doi: https://doi.org/10.1159/000496183

184. Rubino F, Nathan DM, Eckel RH, et al. Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: A Joint Statement by International Diabetes Organizations. Diabetes Care. 2016;39(6):861-877. doi: https://doi.org/10.2337/dc16-0236

185. Aminian A, Brethauer SA, Andalib A? et al. Individualized Metabolic Surgery Score: Procedure Selection Based on Diabetes Severity. Ann Surg. 2017;266(4):650-657. doi: https://doi.org/10.1097/SLA.0000000000002407

186. Busetto L, Dicker D, Azran C, et al. Practical Recommendations of the Obesity Management Task Force of the European Association for the Study of Obesity for the Post-Bariatric Surgery Medical Management. Obes Facts. 2017;10(6):597-632. doi: https://doi.org/10.1159/000481825

187. Hussain A. The effect of metabolic surgery on type 1 diabetes: meta-analysis. Arch Endocrinol Metab. 2018;62(2):172-178. doi: https://doi.org/10.20945/2359-3997000000021

188. World Health Organization. Noncommunicable Diseases Country Profiles 2018. Russian Federation. Available at: https://www.who.int/nmh/countries/2018/rus_en.pdf?ua=1

189. Norman JE. The adverse effects of obesity on reproduction. Reproduction. 2010;140(3):343-345. doi: https://doi.org/10.1530/REP-10-0297

190. Pasquali R, Gambineri A, Pagotto U. Review article: The impact of obesity on reproduction in women with polycystic ovary syndrome. BJOG An Int J Obstet Gynaecol. 2006;113(10):1148-1159. doi: https://doi.org/10.1111/j.1471-0528.2006.00990.x

191. Pasquali R, Gambineri A. Metabolic effects of obesity on reproduction. Reprod Biomed Online. 2006;12(5):542-551. doi: https://doi.org/10.1016/S1472-6483(10)61179-0

192. Pasquali R. Obesity and reproductive disorders in women. Hum Reprod Update. 2003;9(4):359-372. doi: https://doi.org/10.1093/humupd/dmg024

193. Jain A, Polotsky AJ, Rochester D, et al. Pulsatile Luteinizing Hormone Amplitude and Progesterone Metabolite Excretion Are Reduced in Obese Women. J Clin Endocrinol Metab. 2007;92(7):2468-2473. doi: https://doi.org/10.1210/jc.2006-2274

194. Castillo-Martínez L, López-Alvarenga JC, Villa AR, González-Barranco J. Menstrual cycle length disorders in 18- to 40-y-old obese women. Nutrition. 2003;19(4):317-320. doi: https://doi.org/10.1016/S0899-9007(02)00998-X

195. Polotsky AJ, Hailpern SM, Skurnick JH, et al. Association of adolescent obesity and lifetime nulliparity—The Study of Women’s Health Across the Nation (SWAN). Fertil Steril. 2010;93(6):2004-2011. doi: https://doi.org/10.1016/j.fertnstert.2008.12.059

196. Kuchenbecker WKH, Groen H, Zijlstra TM, et al. The Subcutaneous Abdominal Fat and Not the Intraabdominal Fat Compartment Is Associated with Anovulation in Women with Obesity and Infertility. J Clin Endocrinol Metab. 2010;95(5):2107-2112. doi: https://doi.org/10.1210/jc.2009-1915

197. Morán C, Hernández E, Ruíz JE, et al. Upper Body Obesity and Hyperinsulinemia Are Associated with Anovulation. Gynecol Obstet Invest. 1999;47(1):1-5. doi: https://doi.org/10.1159/000010052

198. Gesink Law DC, Maclehose RF, Longnecker MP. Obesity and time to pregnancy. Hum Reprod. 2006;22(2):414-420. doi: https://doi.org/10.1093/humrep/del400

199. Jensen TK, Scheike T, Keiding N, Schaumburg I, Grandjean P. Fecundability in Relation to Body Mass and Menstrual Cycle Patterns. Epidemiology. 1999;10(4):422-428. doi: https://doi.org/10.1097/00001648-199907000-00014

200. Zaadstra BM, Seidell JC, Van Noord PA, et al. Fat and female fecundity: prospective study of effect of body fat distribution on conception rates. BMJ. 1993;306(6876):484-487. doi: https://doi.org/10.1136/bmj.306.6876.484

201. Rich-Edwards JW, Spiegelman D, Garland M, et al. Physical Activity, Body Mass Index, and Ovulatory Disorder Infertility. Epidemiology. 2002;13(2):184-190. doi: https://doi.org/10.1097/00001648-200203000-00013

202. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults — The Evidence Report. National Institutes of Health. Obesity research. 1998;6(Suppl 2):51S–209S.

203. Selter J, Wen T, Palmerola KL, et al. Life-threatening complications among women with severe ovarian hyperstimulation syndrome. Am J Obstet Gynecol. 2019;220(6):575.e1-575.e11. doi: https://doi.org/10.1016/j.ajog.2019.02.009

204. Siddiqui A, Azria E, Howell EA, et al. Associations between maternal obesity and severe maternal morbidity: Findings from the French EPIMOMS population‐based study. Paediatr Perinat Epidemiol. 2019;33(1):7-16. doi: https://doi.org/10.1111/ppe.12522

205. Белицина Л.В. Ожирение и репродуктивное здоровье (обзорная статья) // Журнал ассоциации специалистов в области репродуктивного здоровья. — 2012. — №3. — С. 3-25.

206. Подзолкова Н.М., Агеева М.И., Скворцова М.Ю., и др. Течение беременности и перинатальные исходы у женщин с нарушениями жирового обмена // Акушерство и Гинекология. — 2011. — №6. — С. 86-92

207. Gaudet L, Ferraro ZM, Wen SW, Walker M. Maternal Obesity and Occurrence of Fetal Macrosomia: A Systematic Review and Meta-Analysis. Biomed Res Int. 2014;2014:1-22. doi: https://doi.org/10.1155/2014/640291

208. Institute of Medicine and National Research Council. 2009. Weight Gain During Pregnancy: Reexamining the Guidelines. Washington, DC: The National Academies Press. doi: https://doi.org/10.17226/12584

209. Mahutte N, Kamga-Ngande C, Sharma A, Sylvestre C. Obesity and Reproduction. J Obstet Gynaecol Canada. 2018;40(7):950-966. doi: https://doi.org/10.1016/j.jogc.2018.04.030

210. Holton S, Fisher J, Nguyen H, et al. Pre-pregnancy body mass index and the risk of antenatal depression and anxiety. Women and Birth. 2019;32(6):e508-e514. doi: https://doi.org/10.1016/j.wombi.2019.01.007

211. Broughton DE, Moley KH. Obesity and female infertility: potential mediators of obesity’s impact. Fertil Steril. 2017;107(4):840-847. doi: https://doi.org/10.1016/j.fertnstert.2017.01.017

212. Teede H, Misso M, Costello M, et al. International Evidence-Based Guideline for the Assessment and Management of Polycystic Ovary Syndrome 2018. Available at: https://www.monash.edu/__data/assets/pdf_file/0004/1412644/PCOS_Evidence-Based-Guidelines_20181009.pdf

213. Maged AM, Fahmy RM, Rashwan H, et al. Effect of body mass index on the outcome of IVF cycles among patients with poor ovarian response. Int J Gynecol Obstet. 2019;144(2):161-166. doi: https://doi.org/10.1002/ijgo.12706

214. Koning AMH, Mutsaerts MAQ, Kuchenbecher WKH, et al. Complications and outcome of assisted reproduction technologies in overweight and obese women. Hum Reprod. 2012;27(2):457-467. doi: https://doi.org/10.1093/humrep/der416

215. Banker M, Sorathiya D, Shah S. Effect of Body Mass Index on the Outcome of In-Vitro Fertilization/Intracytoplasmic Sperm Injection in Women. J Hum Reprod Sci. 2017;10(1):37-43. doi: https://doi.org/10.4103/jhrs.JHRS_75_16

216. Frankenthal D, Hirsh-Yechezkel G, Boyko V, et al. The effect of body mass index (BMI) and gestational weight gain on adverse obstetrical outcomes in pregnancies following assisted reproductive technology as compared to spontaneously conceived pregnancies. Obes Res Clin Pract. 2019;13(2):150-155. doi: https://doi.org/10.1016/j.orcp.2018.11.239

217. Kolotkin RL, Zunker C, Østbye T. Sexual Functioning and Obesity: A Review. Obesity. 2012;20(12):2325-2333. doi: https://doi.org/10.1038/oby.2012.104

218. Steffen KJ, King WC, White GE, et al. Changes in Sexual Functioning in Women and Men in the 5 Years After Bariatric Surgery. JAMA Surg. 2019;154(6):487. doi: https://doi.org/10.1001/jamasurg.2018.1162

219. Yao K, Bian C, Zhao X. Association of polycystic ovary syndrome with metabolic syndrome and gestational diabetes: Aggravated complication of pregnancy. Exp Ther Med. 2017;14(2):1271-1276. doi: https://doi.org/10.3892/etm.2017.4642

220. Rodgers R, Avery J, Moore V, et al. Complex diseases and co-morbidities: polycystic ovary syndrome and type 2 diabetes mellitus. Endocr Connect. February 2019. doi: https://doi.org/10.1530/EC-18-0502

221. MacKintosh ML, Crosbie EJ. Prevention Strategies in Endometrial Carcinoma. Curr Oncol Rep. 2018;20(12):101. doi: https://doi.org/10.1007/s11912-018-0747-1

222. Benedetto C, Salvagno F, Canuto EM, Gennarelli G. Obesity and female malignancies. Best Pract Res Clin Obstet Gynaecol. 2015;29(4):528- 540. doi: https://doi.org/10.1016/j.bpobgyn.2015.01.003

223. Yang S, Thiel KW, Leslie KK. Progesterone: the ultimate endometrial tumor suppressor. Trends Endocrinol Metab. 2011;22(4):145-152. doi: https://doi.org/10.1016/j.tem.2011.01.005

224. Gottschau M, Kjaer SK, Jensen A, et al. Risk of cancer among women with polycystic ovary syndrome: A Danish cohort study. Gynecol Oncol. 2015;136(1):99-103. doi: https://doi.org/10.1016/j.ygyno.2014.11.012

225. Wise MR, Jordan V, Lagas A, et al. Obesity and endometrial hyperplasia and cancer in premenopausal women: A systematic review. Am J Obstet Gynecol. 2016;214(6):689.e1-689.e17. doi: https://doi.org/10.1016/j.ajog.2016.01.175

226. Bellver J, Martínez-Conejero JA, Labarta E, et al. Endometrial gene expression in the window of implantation is altered in obese women especially in association with polycystic ovary syndrome. Fertil Steril. 2011;95(7):2335-2341.e8. doi: https://doi.org/10.1016/j.fertnstert.2011.03.021

227. Hillers-Ziemer LE, Arendt LM. Weighing the Risk: effects of Obesity on the Mammary Gland and Breast Cancer Risk. J Mammary Gland Biol Neoplasia. 2020;25(2):115-131. doi: https://doi.org/10.1007/s10911-020-09452-5

228. Belardi V, Gallagher EJ, Novosyadlyy R, LeRoith D. Insulin and IGFs in Obesity-Related Breast Cancer. J Mammary Gland Biol Neoplasia. 2013;18(3-4):277-289. doi: https://doi.org/10.1007/s10911-013-9303-7

229. Клинические рекомендации Российской ассоциации эндокринологов и Российского общества бариатрических хирургов «Лечение ожирения у взрослых», 2020 Available at: http://cr.rosminzdrav.ru/schema/28

230. Morgante G, Massaro MG, Di Sabatino A, et al. Therapeutic approach for metabolic disorders and infertility in women with PCOS. Gynecol Endocrinol. 2018;34(1):4-9. doi: https://doi.org/10.1080/09513590.2017.1370644

231. Committee Opinion No. 650. Physical Activity and Exercise During Pregnancy and the Postpartum Period. Obstet Gynecol. 2015;126(6):e135-e142. doi: https://doi.org/10.1097/AOG.0000000000001214

232. Muktabhant B, Lawrie TA, Lumbiganon P, Laopaiboon M. Diet or exercise, or both, for preventing excessive weight gain in pregnancy. Cochrane Database Syst Rev. 2015;(6). doi: https://doi.org/10.1002/14651858.CD007145.pub3

233. Artal R. Guidelines of the American College of Obstetricians and Gynecologists for exercise during pregnancy and the postpartum period. Br J Sports Med. 2003;37(1):6-12. doi: https://doi.org/10.1136/bjsm.37.1.6

234. National Institute for Health and Clinical Excellence. NICE public health guidance 27: weight management before, during and after pregnancy. London, United Kingdom: NICE, 2010. Available at: https://www.nice.org.uk/guidance/ph27

235. Teede HJ, Misso ML, Costello MF, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil Steril. 2018;110(3):364-379. doi: https://doi.org/10.1016/j.fertnstert.2018.05.004

236. Arentz S, Smith CA, Abbott J, Bensoussan A. Nutritional supplements and herbal medicines for women with polycystic ovary syndrome; a systematic review and meta-analysis. BMC Complement Altern Med. 2017;17(1):500. doi: https://doi.org/10.1186/s12906-017-2011-x

237. Kwon C-Y, Lee B, Park KS. Oriental herbal medicine and moxibustion for polycystic ovary syndrome. Medicine (Baltimore). 2018;97(43):e12942. doi: https://doi.org/10.1097/MD.0000000000012942

238. Российское общество акушеров-гинекологов Российская ассоциация по менопаузе. Менопауза и климактерическое состояние у женщины. Клинические рекомендации, 2016.

239. Рекомендации по ведению больных с метаболическим синдромом МЗ РФ, 2013.

240. Сухих Г.Т., Сметник В.П., Андреева Е.Н., и др. Менопаузальная гормонотерапия и сохранение здоровья женщин в зрелом возрасте. Клинические рекомендации (протокол лечения), Москва, 2016 г.

241. Lambrinoudaki I, Augoulea A, Armeni E, et al. Menopausal symptoms are associated with subclinical atherosclerosis in healthy recently postmenopausal women. Climacteric. 2012;15(4):350-357. doi: https://doi.org/10.3109/13697137.2011.618564

242. Lee SW, Jo HH, Kim MR, Kwon DJ, You YO, Kim JH. Association between menopausal symptoms and metabolic syndrome in postmenopausal women. Arch Gynecol Obstet. 2012;285(2):541-548. doi: https://doi.org/10.1007/s00404-011-2016-5

243. Андреева Е.Н., Григорян О.Р. Менопауза при ожирении. Научнопрактическое руководство (под ред. Академика РАН Дедова И.И.).

244. М.: 2018, с. 11.

245. Сметник В.П. Медицина климактерия. Ярославль: Литера, 2006. 848 с.

246. Lobo RA, Davis SR, De Villiers TJ, et al. Prevention of diseases after menopause. Climacteric. 2014;17(5):540-556. doi: https://doi.org/10.3109/13697137.2014.933411

247. Baber RJ, Panay N, Fenton A. 2016 IMS Recommendations on women’s midlife health and menopause hormone therapy. Climacteric. 2016;19(2):109-150. doi: https://doi.org/10.3109/13697137.2015.1129166

248. Neves-e-Castro M, Birkhauser M, Samsioe G, et al. EMAS position statement: The ten point guide to the integral management of menopausal health. Maturitas. 2015;81(1):88-92. doi: https://doi.org/10.1016/j.maturitas.2015.02.003

249. National Institute for Health and Clinical Excellence. Menopause: Diagnosis and Management (NG23) 2015. Available at: https://www.nice.org.uk/guidance/ng23/resources/menopausediagnosis-andmanagement-1837330217413

250. Howe M, Leidal A, Montgomery D, Jackson E. Role of Cigarette Smoking and Gender in Acute Coronary Syndrome Events. Am J Cardiol. 2011;108(10):1382-1386. doi: https://doi.org/10.1016/j.amjcard.2011.06.059

251. Luo J, Rossouw J, Margolis KL. Smoking Cessation, Weight Change, and Coronary Heart Disease Among Postmenopausal Women With and Without Diabetes. JAMA. 2013;310(1):94. doi: https://doi.org/10.1001/jama.2013.6871

252. Kline J, Tang A, Levin B. Smoking, alcohol and caffeine in relation to two hormonal indicators of ovarian age during the reproductive years. Maturitas. 2016;92:115-122. doi: https://doi.org/10.1016/j.maturitas.2016.07.010

253. WHO Consultation on Obesity (1997: Geneva S, Diseases WHOD of N, World Health Organization. Programme of Nutrition F and RH. Obesity: preventing and managing the global epidemic : report of a WHO Consultation on Obesity, Geneva, 3-5 June 1997. https://apps.who.int/iris/handle/10665/63854

254. Stallings DT, Kraenzle Schneider J. Motivational Interviewing and Fat Consumption in Older Adults: A Meta-Analysis. J Gerontol Nurs. 2018;44(11):33-43. doi: https://doi.org/10.3928/00989134-20180817-01

255. Eckel RH, Jakicic JM, Ard JD, et al. 2013 AHA/ACC Guideline on Lifestyle Management to Reduce Cardiovascular Risk. Circulation. 2014;129(25 suppl 2):S76-S99. doi: https://doi.org/10.1161/01.cir.0000437740.48606.d1

256. Ladabaum U, Mannalithara A, Myer PA, Singh G. Obesity, Abdominal Obesity, Physical Activity, and Caloric Intake in US Adults: 1988 to 2010. Am J Med. 2014;127(8):717-727.e12. doi: https://doi.org/10.1016/j.amjmed.2014.02.026

257. U.S. Department of Health and Human Services. 2008 Physical activity guidelines for Americans: Be Active, Healthy and Happy! US Dep Heal Hum Serv. 2008. Available at: https://health.gov/our-work/physical-activity/current-guidelines

258. Эффективность терапии Редуксином пациенток с ожирением старше 40 лет при наличии сопутствующих гинекологических заболеваний. Клинический отчет, программа Примавера, 2016.

259. Freeman EW, Sammel MD, Sanders RJ. Risk of long-term hot flashes after natural menopause. Menopause. 2014;21(9):924-932. doi: https://doi.org/10.1097/GME.0000000000000196

260. Костромина А.А., Радзинский В.Е., Хамошина М.Б., и др. Факторы риска развития климактерического синдрома тяжелой степени: клиникостатистическое исследование // Доктор.Ру. – 2017. – №9 (138). – С. 12–16.

261. Stuenkel CA, Davis SR, Gompel A, et al. Treatment of Symptoms of the Menopause: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2015;100(11):3975-4011. doi: https://doi.org/10.1210/jc.2015-2236

262. WHO. Obesity and overweight. Available from: https://www.who.int/ru/news-room/fact-sheets/detail/obesity-and-overweight

263. Sturm R. Increases in Clinically Severe Obesity in the United States, 1986-2000. Arch Intern Med. 2003;163(18):2146. doi: https://doi.org/10.1001/archinte.163.18.2146

264. Kontsevaya A, Shalnova S, Deev A, et al. Overweight and Obesity in the Russian Population: Prevalence in Adults and Association with Socioeconomic Parameters and Cardiovascular Risk Factors. Obes Facts. 2019;12(1):103-114. doi: https://doi.org/10.1159/000493885

265. Бутрова СА. От эпидемии ожирения к эпидемии сахарного диабета // Международный эндокринологический журнал. — 2013. — Т.50. — №2. — С.45-50.

266. Калинченко СЮ, Тюзиков ИА, Ворслов ЛО. Ожирение, инсулинорезистентность и репродуктивное здоровье мужчины: патогенетические взаимодействия и современная патогенетическая фармакология // Эффективная фармакотерапия. — 2015. — №27. — С.66-79.

267. Аметов АС, Демидова ТЮ, Кочергина ИИ. Эффективность препаратов метформина в лечении сахарного диабета 2 типа // Медицинский совет. — 2016. — №3. — С.30-36.

268. Коган МИ, Воробьев СВ, Хрипун ИА, и др. Тестостерон: от сексуальности к метаболическому контролю. М.: Феникс; 2017.

269. Wu F-Z, Wu CC, Kuo P-L, Wu M-T. Differential impacts of cardiac and abdominal ectopic fat deposits on cardiometabolic risk stratification. BMC Cardiovasc Disord. 2016;16(1):20. doi: https://doi.org/10.1186/s12872-016-0195-5

270. Pandolfi JB, Ferraro AA, Sananez I, et al. ATP-Induced Inflammation Drives Tissue-Resident Th17 Cells in Metabolically Unhealthy Obesity. J Immunol. 2016;196(8):3287-3296. doi: https://doi.org/10.4049/jimmunol.1502506

271. Eckel RH, Jakicic JM, Ard JD, et al. Gonadal Steroids and Body Composition, Strength, and Sexual Function in Men. N Engl J Med. 2013;369(25):2455-2457. doi: https://doi.org/10.1056/NEJMc1313169

272. Corona G, Mannucci E, Ricca V, et al. The age-related decline of testosterone is associated with different specific symptoms and signs in patients with sexual dysfunction. Int J Androl. 2009;32(6):720-728. doi: https://doi.org/10.1111/j.1365-2605.2009.00952.x

273. Svartberg J, von Mühlen D, Sundsfjord J, Jorde R. Waist Circumference and Testosterone Levels in Community Dwelling Men. The Tromsø Study. Eur J Epidemiol. 2003;19(7):657-663. doi: https://doi.org/10.1023/B:EJEP.0000036809.30558.8f

274. Роживанов Р.В. Синдром гипогонадизма у мужчин // Ожирение и метаболизм. — 2014. — Т.11. — №2. — С.30-34. doi: https://doi.org/10.14341/omet2014230-34

275. Роживанов Р.В. Шурдумова Б.О., Парфенова Н.С., Савельева Л.В. Комплексный подход к лечению ожиренияи метаболического синдрома у мужчин Синдром гипогонадизма у мужчин // Ожирение и метаболизм. — 2009. — Т.6. — №4. — С.38-41. doi: https://doi.org/10.14341/2071-8713-4877

276. Роживанов РВ. Эндокринные нарушения половой функции у мужчин. В кн. Рациональная фармакотерапия заболеваний эндокринной системы и нарушений обмена веществ. Под ред. академика РАН и РАМН Дедова И.И., академика РАМН Мельниченко Г.А. Второе издание, исправленное и дополненное. Москва; 2013: 754-775.

277. Corona G, Giagulli VA, Maseroli E, et al. Testosterone supplementation and body composition: results from a meta-analysis of observational studies. J Endocrinol Invest. 2016;39(9):967-981. doi: https://doi.org/10.1007/s40618-016-0480-2

278. Cameron JL, Jain R, Rais M, et al. Perpetuating effects of androgen deficiency on insulin resistance. Int J Obes. 2016;40(12):1856-1863. doi: https://doi.org/10.1038/ijo.2016.148

279. Василькова ОН, Мохорт ТВ, Рожко АВ. Возрастной андрогенный дефицит, метаболический синдром и сахарный диабет 2-го типа: есть ли взаимосвязь? // Медицинские новости. — 2008. — №3. — С.14-17

280. Дзантиева ЕО, Гусова ЗР, Хрипун ИА, Воробьев СВ. Особенности патогенетического влияния андрогенного дефицита на формирование нарушений углеводного обмена у мужчин с ожирением // Эндокринология: Новости. Мнения. Обучение. — 2017. — Т.4. — №21. — С.84-98.

281. Мамедов МН. Эректильная дисфункция, андрогендефицитное состояние и сердечно-сосудистые заболевания: комплексный подход к проблемам мужского здоровья. Научно-методическое пособие. Москва. Мед. книга; 2008

282. Zhang W-J, Chen L-L, Zheng J, et al. Association of adult weight gain and nonalcoholic fatty liver in a cross-sectional study in Wan Song Community, China. Brazilian J Med Biol Res. 2014;47(2):151-156. doi: https://doi.org/10.1590/1414-431X20133058

283. Wu FCW, Tajar A, Beynon JM, et al. Identification of Late-Onset Hypogonadism in Middle-Aged and Elderly Men. N Engl J Med. 2010;363(2):123-135. doi: https://doi.org/10.1056/NEJMoa0911101

284. Tajar A, Huhtaniemi IT, O’Neill TW, et al. Characteristics of Androgen Deficiency in Late-Onset Hypogonadism: Results from the European Male Aging Study (EMAS). J Clin Endocrinol Metab. 2012;97(5):1508-1516. doi: https://doi.org/10.1210/jc.2011-2513

285. Rey RA, Grinspon RP. Normal male sexual differentiation and aetiology of disorders of sex development. Best Pract Res Clin Endocrinol Metab. 2011;25(2):221-238. doi: https://doi.org/10.1016/j.beem.2010.08.013

286. Isidori AM, Lenzi A. Risk factors for androgen decline in older males: lifestyle, chronic diseases and drugs. J Endocrinol Invest. 2005;28(3 Suppl):14-22.

287. Bhasin S, Pencina M, Jasuja GK, et al. Reference Ranges for Testosterone in Men Generated Using Liquid Chromatography Tandem Mass Spectrometry in a Community-Based Sample of Healthy Nonobese Young Men in the Framingham Heart Study and Applied to Three Geographically Distinct Cohorts. J Clin Endocrinol Metab. 2011;96(8):2430-2439. doi: https://doi.org/10.1210/jc.2010-3012

288. Vesper HW, Bhasin S, Wang C, et al. Interlaboratory comparison study of serum total testoserone measurements performed by mass spectrometry methods. Steroids. 2009;74(6):498-503. doi: https://doi.org/10.1016/j.steroids.2009.01.004

289. Роживанов Р.В., Курбатов Д.Г., Кравцова Н.С. Дифференциально-диагностическое, прогностическое и терапевтическое значение пробы с кломифеном у мужчин с гипогонадизмом // Проблемы Эндокринологии. — 2016. — Т.62. — №1. — С.35-37. doi: https://doi.org/10.14341/probl201662135-37

290. Роживанов РВ. Эффективная терапия и ошибки в лечении эндокринных нарушений в андрологии. В кн. Эндокринология. Фармакотерапия без ошибок. Под ред. академика РАН и РАМН Дедова И.И., академика РАМН Мельниченко Г. А. Москва; 2013: 615-625.

291. Kim ED, McCullough A, Kaminetsky J. Oral enclomiphene citrate raises testosterone and preserves sperm counts in obese hypogonadal men, unlike topical testosterone: restoration instead of replacement. BJU Int. 2016;117(4):677-685. doi: https://doi.org/10.1111/bju.13337

292. Tracz MJ, Sideras K, Boloña ER, et al. Testosterone Use in Men and Its Effects on Bone Health. A Systematic Review and Meta-Analysis of Randomized Placebo-Controlled Trials. J Clin Endocrinol Metab. 2006;91(6):2011-2016. doi: https://doi.org/10.1210/jc.2006-0036

293. Isidori AM, Giannetta E, Greco EA, et al. Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clin Endocrinol (Oxf ). 2005;63(3):280-293. doi: https://doi.org/10.1111/j.1365-2265.2005.02339.x

294. Moon DG, Park MG, Lee SW, et al. The Efficacy and Safety of Testosterone Undecanoate (Nebido®) in Testosterone Deficiency Syndrome in Korean: A Multicenter Prospective Study. J Sex Med. 2010;7(6):2253-2260. doi: https://doi.org/10.1111/j.1743-6109.2010.01765.x

295. Basaria S, Lakshman KM. Safety and efficacy of testosterone gel in the treatment of male hypogonadism. Clin Interv Aging. 2009;4:397-412.

296. Johansen Taber. Male breast cancer: Risk factors, diagnosis, and management (Review). Oncol Rep. 2010;24(5):1115-1120. doi: https://doi.org/10.3892/or_00000962

297. Shabsigh R, Crawford ED, Nehra A, Slawin KM. Testosterone therapy in hypogonadal men and potential prostate cancer risk: a systematic review. Int J Impot Res. 2009;21(1):9-23. doi: https://doi.org/10.1038/ijir.2008.31

298. Marks LS, Mazer NA, Mostaghel E, et al. Effect of Testosterone Replacement Therapy on Prostate Tissue in Men With Late-Onset Hypogonadism. JAMA. 2006;296(19):2351. doi: https://doi.org/10.1001/jama.296.19.2351

299. Medras M, Alicja F, Pawel J, et al. Breast cancer and long-term hormonal treatment of male hypogonadism. Breast Cancer Res Treat. 2006;96(3):263-265. doi: https://doi.org/10.1007/s10549-005-9074-y

300. Fernández-Balsells MM, Murad MH, Lane M, et al. Adverse Effects of Testosterone Therapy in Adult Men: A Systematic Review and Meta-Analysis. J Clin Endocrinol Metab. 2010;95(6):2560-2575. doi: https://doi.org/10.1210/jc.2009-2575

301. Corona G, Maseroli E, Rastrelli G, et al. Cardiovascular risk associated with testosterone-boosting medications: a systematic review and meta-analysis. Expert Opin Drug Saf. 2014;13(10):1327-1351. doi: https://doi.org/10.1517/14740338.2014.950653

302. Calof OM, Singh AB, Lee ML, et al. Adverse Events Associated With Testosterone Replacement in Middle-Aged and Older Men: A Meta-Analysis of Randomized, Placebo-Controlled Trials. Journals Gerontol Ser A Biol Sci Med Sci. 2005;60(11):1451-1457. doi: https://doi.org/10.1093/gerona/60.11.1451

303. Basaria S, Coviello AD, Travison TG, et al. Adverse Events Associated with Testosterone Administration. N Engl J Med. 2010;363(2):109-122. doi: https://doi.org/10.1056/NEJMoa1000485

304. Saad F, Aversa A, Isidori AM, et al. Zafalon L, Zitzmann M, Gooren L. Onset of effects of testosterone treatment and time span until maimum effects are achieved. Eur J Endocrinol. 2011;165(5):675-685. doi: https://doi.org/10.1530/EJE-11-0221

305. McMullin MF, Bareford D, Campbell P, et al. Guidelines for the diagnosis, investigation and management of polycythaemia/erythrocytosis. Br J Haematol. 2005;130(2):174-195. doi: https://doi.org/10.1111/j.1365-2141.2005.05535.x

306. Роживанов РВ, Курбатов ДГ. Гематологические и урологические аспекты безопасности заместительной андрогенной терапии препаратом тестостерона ундеканоата пролонгированного действия у пациентов с гипогонадизмом // Проблемы эндокринологии. — 2009. — Т.6. — №55. — С.31-35. doi: https://doi.org/10.14341/probl200955631-35

307. Morgentaler A, Morales A. Should Hypogonadal Men With Prostate Cancer Receive Testosterone? J Urol. 2010;184(4):1257-1260. doi: https://doi.org/10.1016/j.juro.2010.07.010

308. Kaufman JM, Graydon RJ. Androgen replacement after curative radical prostatectomy for prostate cancer in hypogonadal men. J Urol. 2004;172(3):920-922. doi: https://doi.org/10.1097/01.ju.0000136269.10161.32

309. Sarosdy MF. Testosterone replacement for hypogonadism after treatment of early prostate cancer with brachytherapy. Cancer. 2007;109(3):536-541. doi: https://doi.org/10.1002/cncr.22438

310. Haider A, Saad F, Doros G, Gooren L. Hypogonadal obese men with and without diabetes mellitus type 2 lose weight and show improvement in cardiovascular risk factors when treated with testosterone: An observational study. Obes Res Clin Pract. 2014;8(4):e339-e349. doi: https://doi.org/10.1016/j.orcp.2013.10.005

311. Saad F, Haider A, Doros G, Traish A. Long‐term treatment of hypogonadal men with testosterone produces substantial and sustained weight loss. Obesity. 2013;21(10):1975-1981. doi: https://doi.org/10.1002/oby.20407

312. Yassin AA, Doros G. Testosterone therapy in hypogonadal men results in sustained and clinically meaningful weight loss. Clin Obes. 2013;3(3-4):73-83. doi: https://doi.org/10.1111/cob.12022

313. Corona G, Monami M, Rastrelli G, et al. Type 2 diabetes mellitus and testosterone: a meta-analysis study. Int J Androl. 2011;34(6pt1):528-540. doi: https://doi.org/10.1111/j.1365-2605.2010.01117.x

314. Haider A, Yassin A, Doros G, Saad F. Effects of Long-Term Testosterone Therapy on Patients with “Diabesity”: Results of Observational Studies of Pooled Analyses in Obese Hypogonadal Men with Type 2 Diabetes. Int J Endocrinol. 2014;2014:1-15. doi: https://doi.org/10.1155/2014/683515

315. Aversa A, Bruzziches R, Francomano D, et al. Effects of Testosterone Undecanoate on Cardiovascular Risk Factors and Atherosclerosis in Middle-Aged Men with Late-Onset Hypogonadism and Metabolic Syndrome: Results from a 24-month, Randomized, Double-Blind, Placebo-Controlled Study. J Sex Med. 2010;7(10):3495-3503. doi: https://doi.org/10.1111/j.1743-6109.2010.01931.x

316. Jones TH, Arver S, Behre HM, et al. Testosterone Replacement in Hypogonadal Men With Type 2 Diabetes and/or Metabolic Syndrome (the TIMES2 Study). Diabetes Care. 2011;34(4):828-837. doi: https://doi.org/10.2337/dc10-1233

317. Strollo F, Strollo G, Morè M, et al. Low-intermediate dose testosterone replacement therapy by different pharmaceutical preparations improves frailty score in elderly hypogonadal hyperglycaemic patients. Aging Male. 2013;16(2):33-37. doi: https://doi.org/10.3109/13685538.2013.773305

318. Шальнова С.А., Деев А.Д., Баланова Ю.А., и др. Двадцатилетние тренды ожирения и артериальной гипертонии и их ассоциации в России // Кардиоваскулярная терапия и профилактика. — 2017. — Т.16. — №4. — С.4-10. doi: https://doi.org/10.15829/1728-8800-2017-4-4-10

319. Баланова Ю.А., Шальнова С.А., Деев А.Д., и др. Ожирение в Российской популяции - распространенность и ассоциации с факторами риска хронических неинфекционных заболеваний. Российский кардиологический журнал. — 2018. — №6. — С.123-130. doi: https://doi.org/10.15829/1560-4071-2018-6-123-130

320. Kannel WB. The Relation of Adiposity to Blood Pressure and Development of Hypertension. Ann Intern Med. 1967;67(1):48. doi: https://doi.org/10.7326/0003-4819-67-1-48

321. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health. 2009;9(1):88. doi: https://doi.org/10.1186/1471-2458-9-88

322. Bogers RP. Association of Overweight With Increased Risk of Coronary Heart Disease Partly Independent of Blood Pressure and Cholesterol Levels: A Meta-analysis of 21 Cohort Studies Including More Than 300 000 Persons. Arch Intern Med. 2007;167(16):1720. doi: https://doi.org/10.1001/archinte.167.16.1720

323. Fan J, Song Y, Chen Y, Hui R, Zhang W. Combined effect of obesity and cardio-metabolic abnormality on the risk of cardiovascular disease: A meta-analysis of prospective cohort studies. Int J Cardiol. 2013;168(5):4761-4768. doi: https://doi.org/10.1016/j.ijcard.2013.07.230

324. Wing RR, Lang W, Wadden TA, et al. Benefits of Modest Weight Loss in Improving Cardiovascular Risk Factors in Overweight and Obese Individuals With Type 2 Diabetes. Diabetes Care. 2011;34(7):1481-1486. doi: https://doi.org/10.2337/dc10-2415

325. Harrington M, Gibson S, Cottrell RC. A review and meta-analysis of the effect of weight loss on all-cause mortality risk. Nutr Res Rev. 2009;22(1):93-108. doi: https://doi.org/10.1017/S0954422409990035

326. Saneei P, Salehi-Abargouei A, Esmaillzadeh A, Azadbakht L. Influence of Dietary Approaches to Stop Hypertension (DASH) diet on blood pressure: A systematic review and meta-analysis on randomized controlled trials. Nutr Metab Cardiovasc Dis. 2014;24(12):1253-1261.

327. doi: https://doi.org/10.1016/j.numecd.2014.06.008

328. He FJ, Li J, MacGregor GA. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and metaanalysis of randomised trials. BMJ. 2013;346(apr03 3):f1325-f1325. doi: https://doi.org/10.1136/bmj.f1325

329. Neter JE, Stam BE, Kok FJ, et al. Influence of Weight Reduction on Blood Pressure. Hypertension. 2003;42(5):878-884. doi: https://doi.org/10.1161/01.HYP.0000094221.86888.AE

330. Estruch R, Ros E, Salas-Salvadó J, et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N Engl J Med. 2018. doi: https://doi.org/10.1056/nejmoa1800389

331. Kim H, Caulfield LE, Rebholz CM. Healthy Plant-Based Diets Are Associated with Lower Risk of All-Cause Mortality in US Adults. J Nutr. 2018;148(4):624-631. doi: https://doi.org/10.1093/jn/nxy019

332. Satija A, Bhupathiraju SN, Spiegelman D, et al. Healthful and Unhealthful Plant-Based Diets and the Risk of Coronary Heart Disease in U.S. Adults. J Am Coll Cardiol. 2017;70(4):411-422. doi: https://doi.org/10.1016/j.jacc.2017.05.047

333. Sotos-Prieto M, Bhupathiraju SN, Mattei J, et al. Association of Changes in Diet Quality with Total and CauseSpecific Mortality. N Engl J Med. 2017;377(2):143-153. doi: https://doi.org/10.1056/NEJMoa1613502

334. Whalen KA, Judd S, McCullough ML, Flanders WD, Hartman TJ, Bostick RM. Paleolithic and Mediterranean Diet Pattern Scores Are Inversely Associated with All-Cause and CauseSpecific Mortality in Adults. J Nutr. 2017;147(4):612-620. doi: https://doi.org/10.3945/jn.116.241919

335. Bao Y, Han J, Hu FB, et al. Association of Nut Consumption with Total and Cause-Specific Mortality. N Engl J Med. 2013;369(21):2001-2011. doi: https://doi.org/10.1056/NEJMoa1307352

336. Bernstein AM, Sun Q, Hu FB, et al. Major Dietary Protein Sources and Risk of Coronary Heart Disease in Women. Circulation. 2010;122(9):876-883. doi: https://doi.org/10.1161/CIRCULATIONAHA.109.915165

337. Song M, Fung TT, Hu FB, et al. Association of Animal and Plant Protein Intake With All-Cause and Cause-Specific Mortality. JAMA Intern Med. 2016;176(10):1453. doi: https://doi.org/10.1001/jamainternmed.2016.4182

338. Tharrey M, Mariotti F, Mashchak A, et al. Patterns of plant and animal protein intake are strongly associated with cardiovascular mortality: the Adventist Health Study-2 cohort. Int J Epidemiol. 2018;47(5):1603-1612. doi: https://doi.org/10.1093/ije/dyy030

339. Martínez-González MA, Sánchez-Tainta A, Corella D, et al. A provegetarian food pattern and reduction in total mortality in the Prevención con Dieta Mediterránea (PREDIMED) study. Am J Clin Nutr. 2014;100(suppl_1):320S-328S. doi: https://doi.org/10.3945/ajcn.113.071431

340. Reedy J, Krebs-Smith SM, Miller PE, et al. Higher Diet Quality Is Associated with Decreased Risk of All-Cause, Cardiovascular Disease, and Cancer Mortality among Older Adults. J Nutr. 2014;144(6):881-889. doi: https://doi.org/10.3945/jn.113.189407

341. Dickinson HO, Mason JM, Nicolson DJ, et al. Lifestyle interventions to reduce raised blood pressure: a systematic review of randomized controlled trials. J Hypertens. 2006;24(2):215-233. doi: https://doi.org/10.1097/01.hjh.0000199800.72563.26

342. Mente A, de Koning L, Shannon HS, Anand SS. A Systematic Review of the Evidence Supporting a Causal Link Between Dietary Factors and Coronary Heart Disease. Arch Intern Med. 2009;169(7):659. doi: https://doi.org/10.1001/archinternmed.2009.38

343. Sofi F, Abbate R, Gensini GF, Casini A. Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am J Clin Nutr. 2010;92(5):1189-1196. doi: https://doi.org/10.3945/ajcn.2010.29673

344. Wang DD, Li Y, Chiuve SE, et al. Association of Specific Dietary Fats With Total and Cause-Specific Mortality. JAMA Intern Med. 016;176(8):1134. doi: https://doi.org/10.1001/jamainternmed.2016.2417

345. Dehghan M, Mente A, Zhang X, et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet. 2017;390(10107):2050-2062. doi: https://doi.org/10.1016/S0140-6736(17)32252-3

346. Cook NR, Cutler JA, Obarzanek E, et al. Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the trials of hypertension prevention (TOHP). BMJ. 2007;334(7599):885. doi: https://doi.org/10.1136/bmj.39147.604896.55

347. Micha R, Peñalvo JL, Cudhea F, et al. Association Between Dietary Factors and Mortality From Heart Disease, Stroke, and Type 2 Diabetes in the United States. JAMA. 2017;317(9):912. doi: https://doi.org/10.1001/jama.2017.0947

348. Yang Q, Zhang Z, Gregg EW, et al. Added Sugar Intake and Cardiovascular Diseases Mortality Among US Adults. JAMA Intern Med. 2014;174(4):516. doi: https://doi.org/10.1001/jamainternmed.2013.13563

349. Kiage JN, Merrill PD, Robinson CJ, et al. Intake of trans fat and all-cause mortality in the Reasons for Geographical and Racial Differences in Stroke (REGARDS) cohort. Am J Clin Nutr. 2013;97(5):1121-1128. doi: https://doi.org/10.3945/ajcn.112.049064

350. Löfvenborg JE, Andersson T, Carlsson P-O, et al. Sweetened beverage intake and risk of latent autoimmune diabetes in adults (LADA) and type 2 diabetes. Eur J Endocrinol. 2016;175(6):605-614. doi: https://doi.org/10.1530/EJE-16-0376

351. Sacks FM, Svetkey LP, Vollmer WM, et al. Effects on Blood Pressure of Reduced Dietary Sodium and the Dietary Approaches to Stop Hypertension (DASH) Diet. N Engl J Med. 2001;344(1):3-10. doi: https://doi.org/10.1056/NEJM200101043440101

352. Johnson RK, Lichtenstein AH, Anderson CAM, et al. Low-Calorie Sweetened Beverages and Cardiometabolic Health: A Science Advisory From the American Heart Association. Circulation. 2018;138(9). doi: https://doi.org/10.1161/CIR.0000000000000569

353. Shikany JM, Safford MM, Newby PK, et al. Southern Dietary Pattern Is Associated With Hazard of Acute Coronary Heart Disease in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) Study. Circulation. 2015;132(9):804-814. doi: https://doi.org/10.1161/CIRCULATIONAHA.114.014421

354. Seidelmann SB, Claggett B, Cheng S, et al. Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. Lancet Public Heal. 2018;3(9):e419-e428. doi: https://doi.org/10.1016/S2468-2667(18)30135-X

355. Trichopoulou A, Psaltopoulou T, Orfanos P, et al. Lowcarbohydrate–high-protein diet and long-term survival in a general population cohort. Eur J Clin Nutr. 2007;61(5):575-581. doi: https://doi.org/10.1038/sj.ejcn.1602557

356. Noto H, Goto A, Tsujimoto T, Noda M. Low-Carbohydrate Diets and All-Cause Mortality: A Systematic Review and Meta-Analysis of Observational Studies. Manzoli L, ed. PLoS One. 2013;8(1):e55030. doi: https://doi.org/10.1371/journal.pone.0055030

357. Brandt EJ, Myerson R, Perraillon MC, Polonsky TS. Hospital Admissions for Myocardial Infarction and Stroke Before and After the TransFatty Acid Restrictions in New York. JAMA Cardiol. 2017;2(6):627. doi: https://doi.org/10.1001/jamacardio.2017.0491

358. Micha R, Mozaffarian D. Trans fatty acids: effects on metabolic syndrome, heart disease and diabetes. Nat Rev Endocrinol. 2009;5(6):335-344. doi: https://doi.org/10.1038/nrendo.2009.79

359. Mozaffarian D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity. Circulation. 2016;133(2):187-225. doi: https://doi.org/10.1161/CIRCULATIONAHA.115.018585

360. Hansen D, Niebauer J, Cornelissen V, et al. Exercise Prescription in Patients with Different Combinations of Cardiovascular Disease Risk Factors: A Consensus Statement from the EXPERT Working Group. Sport Med. 2018;48(8):1781-1797. doi: https://doi.org/10.1007/s40279-018-0930-4

361. Wing RR, Lang W, Wadden TA, et al. Benefits of Modest Weight Loss in Improving Cardiovascular Risk Factors in Overweight and Obese Individuals With Type 2 Diabetes. Diabetes Care. 2011;34(7):1481-1486. doi: https://doi.org/10.2337/dc10-2415

362. Ricci C, Gaeta M, Rausa E, et al. Long-Term Effects of Bariatric Surgery on Type II Diabetes, Hypertension and Hyperlipidemia: A MetaAnalysis and Meta-Regression Study with 5-Year Follow-Up. Obes Surg. 2015;25(3):397-405. doi: https://doi.org/10.1007/s11695-014-1442-4

363. Ricci C, Gaeta M, Rausa E, et al. Early Impact of Bariatric Surgery on Type II Diabetes, Hypertension, and Hyperlipidemia: A Systematic Review, Meta-Analysis and Meta-Regression on 6,587 Patients. Obes Surg. 2014;24(4):522-528. doi: https://doi.org/10.1007/s11695-013-1121-x

364. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric Surgery. JAMA. 2004;292(14):1724. doi: https://doi.org/10.1001/jama.292.14.1724

365. Böhm M, Schumacher H, Teo KK, et al. Achieved blood pressure and cardiovascular outcomes in high-risk patients: results from ONTARGET and TRANSCEND trials. Lancet. 2017;389(10085):2226-2237. doi: https://doi.org/10.1016/S0140-6736(17)30754-7

366. Kjeldsen SE, Berge E, Bangalore S, et al. No evidence for a J-shaped curve in treated hypertensive patients with increased cardiovascular risk: The VALUE trial. Blood Press. 2016;25(2):83-92. doi: https://doi.org/10.3109/08037051.2015.1106750

367. Mancia G, Kjeldsen SE, Zappe DH, et al. Cardiovascular outcomes at different on-treatment blood pressures in the hypertensive patients of the VALUE trial. Eur Heart J. 2016;37(12):955-964. doi: https://doi.org/10.1093/eurheartj/ehv633

368. SPRINT Research Group, et al. A Randomized Trial of Intensive versus Standard BloodPressure Control. N Engl J Med. 2015;373(22):2103-2116. doi: https://doi.org/10.1056/NEJMoa1511939

369. «Алгоритмы специализированной медицинской помощи больным сахарным диабетом» Под редакцией И.И. Дедова, М.В. Ше1таковой, А.Ю. Майорова 9-й выпуск // Сахарный диабет. — 2019. — Т.22. — №1S1. — C.1-144. doi: https://doi.org/10.14341/DM221S1

370. Tsai W-C, Wu H-Y, Peng Y-S, et al. Association of Intensive Blood Pressure Control and Kidney Disease Progression in Nondiabetic Patients With Chronic Kidney Disease. JAMA Intern Med. 2017;177(6):792. doi: https://doi.org/10.1001/jamainternmed.2017.0197

371. Jafar TH, Stark PC, Schmid CH, et al. Progression of Chronic Kidney Disease: The Role of Blood Pressure Control, Proteinuria, and Angiotensin-Converting Enzyme Inhibition: A Patient-Level Meta-Analysis. Ann Intern Med. 2003;139(4):244. doi: https://doi.org/10.7326/0003-4819-139-4-200308190-00006

372. Sim JJ, Shi J, Kovesdy CP, et al. Impact of Achieved Blood Pressures on Mortality Risk and End-Stage Renal Disease Among a Large, Diverse Hypertension Population. J Am Coll Cardiol. 2014;64(6):588-597. doi: https://doi.org/10.1016/j.jacc.2014.04.065

373. Thomopoulos C, Parati G, Zanchetti A. Effects of blood-pressure-lowering treatment on outcome incidence in hypertension. J Hypertens. 2017;35(5):922-944. doi: https://doi.org/10.1097/HJH.0000000000001276

374. Owen JG, Reisin E. Anti-hypertensive Drug Treatment of Patients with and the Metabolic Syndrome and Obesity: a Review of Evidence, Meta-Analysis, Post hoc and Guidelines Publications. Curr Hypertens Rep. 2015;17(6):46. doi: https://doi.org/10.1007/s11906-015-0558-9

375. Tocci G, Paneni F, Palano F, et al. Angiotensin-Converting Enzyme Inhibitors, Angiotensin II Receptor Blockers and Diabetes: A MetaAnalysis of Placebo-Controlled Clinical Trials. Am J Hypertens. 2011;24(5):582-590. doi: https://doi.org/10.1038/ajh.2011.8

376. Abuissa H, Jones PG, Marso SP, O’Keefe JH. Angiotensin-Converting Enzyme Inhibitors or Angiotensin Receptor Blockers for Prevention of Type 2 Diabetes. J Am Coll Cardiol. 2005;46(5):821-826. doi: https://doi.org/10.1016/j.jacc.2005.05.051

377. Yang Y, Wei R, Xing Y, et al. A meta-analysis of the effect of angiotensin receptor blockers and calcium channel blockers on blood pressure, glycemia and the HOMA-IR index in non-diabetic patients. Metabolism. 2013;62(12):1858-1866. doi: https://doi.org/10.1016/j.metabol.2013.08.008

378. Scheen A. Renin-angiotensin system inhibition prevents type 2 diabetes mellitus: Part 1. A meta-analysis of randomised clinical trials. Diabetes Metab. 2004;30(6):487-496. doi: https://doi.org/10.1016/S1262-3636(07)70146-5

379. Andraws R, Brown DL. Effect of Inhibition of the Renin-Angiotensin System on Development of Type 2 Diabetes Mellitus (MetaAnalysis of Randomized Trials). Am J Cardiol. 2007;99(7):1006-1012. doi: https://doi.org/10.1016/j.amjcard.2006.10.068

380. Dahlöf B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomized trial against atenolol. Lancet. 2002;359(9311):995-1003. doi: https://doi.org/10.1016/S0140-6736(02)08089-3

381. Julius S, Kjeldsen SE, Weber M, et al. Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomised trial. Lancet. 2004;363(9426):2022-2031. doi: https://doi.org/10.1016/S0140-6736(04)16451-9

382. Yusuf S, Pfeffer MA, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet. 2003;362(9386):777-781. doi: https://doi.org/10.1016/S0140-6736(03)14285-7

383. Califf RM, Boolell M, Haffner SM, et al. Prevention of diabetes and cardiovascular disease in patients with impaired glucose tolerance: Rationale and design of the Nateglinide And Valsartan in Impaired Glucose Tolerance Outcomes Research (NAVIGATOR) Trial. Am Heart J. 2008;156(4):623-632. doi: https://doi.org/10.1016/j.ahj.2008.05.017

384. Takagi H, Niwa M, Mizuno Y, Goto S, Umemoto T. Telmisartan as a metabolic sartan: The first meta-analysis of randomized controlled trials in metabolic syndrome. J Am Soc Hypertens. 2013;7(3):229-235. doi: https://doi.org/10.1016/j.jash.2013.02.006

385. Alderman M, Aiyer KJ V. Uric acid: role in cardiovascular disease and effects of losartan. Curr Med Res Opin. 2004;20(3):369-379. doi: https://doi.org/10.1185/030079904125002982

386. Мычка В.Б., Чазова И.Е. Российская доказательная медицина – программа МИНОТАВР: преимущества ретардной формы индапамида при лечении метаболического синдрома // Consilium medicum. — 2006. — Т.8. — №1S1. — C.46-50.

387. Zillich AJ, Garg J, Basu S, et al. Thiazide Diuretics, Potassium, and the Development of Diabetes. Hypertension. 2006;48(2):219-224. doi: https://doi.org/10.1161/01.HYP.0000231552.10054.aa

388. Sharma AM, Wagner T, Marsalek P. Moxonidine in the treatment of overweight and obese patients with the metabolic syndrome: a postmarketing surveillance study. J Hum Hypertens. 2004;18(9):669-675. doi: https://doi.org/10.1038/sj.jhh.1001676

389. Chazova I, Schlaich MP. Improved Hypertension Control with the Imidazoline Agonist Moxonidine in a Multinational Metabolic Syndrome Population: Principal Results of the MERSY Study. Int J Hypertens. 2013;2013:1-9. doi: https://doi.org/10.1155/2013/541689

390. Чазова И. Е., Мычка В. Б. Новые возможности в лечении больных с метаболическим синдромом (результаты исследования ALMAZ) // Системные гипертензии. — 2006. — №2. — C.14-17.

391. Инструкция по медицинскому применению лекарственного препарата для медицинского применения Сибутрамин. Государственный реестр лекарственных средств Министерства здравоохранения РФ. Available at: https://grls.rosminzdrav.ru/grls.aspx

392. Инструкция по медицинскому применению лекарственного препарата для медицинского применения Лираглутид. Государственный реестр лекарственных средств Министерства здравоохранения РФ. Available at: https://grls.rosminzdrav.ru/grls.aspx

393. Инструкция по медицинскому применению лекарственного препарата для медицинского применения Орлистат. Государственный реестр лекарственных средств Министерства здравоохранения РФ. Available at: https://grls.rosminzdrav.ru/grls.aspx

394. Klop B, Elte J, Cabezas M. Dyslipidemia in Obesity: Mechanisms and Potential Targets. Nutrients. 2013;5(4):1218-1240. doi: https://doi.org/10.3390/nu5041218

395. Björnson E, Adiels M, Taskinen M-R, Borén J. Kinetics of plasma triglycerides in abdominal obesity. Curr Opin Lipidol. November 2016:1. doi: https://doi.org/10.1097/MOL.0000000000000375

396. Mandviwala T, Khalid U, Deswal A. Obesity and Cardiovascular Disease: a Risk Factor or a Risk Marker? Curr Atheroscler Rep. 2016;18(5):21. doi: https://doi.org/10.1007/s11883-016-0575-4

397. Feingold KR. Obesity and Dyslipidemia. [Updated 2020 Nov 2]. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc. 2000. Available from: https://www.ncbi.nlm.nih.gov/books/NBK305895/

398. Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459-2472. doi: https://doi.org/10.1093/eurheartj/ehx144

399. Sarwar N, Danesh J, Eiriksdottir G, et al. Triglycerides and the Risk of Coronary Heart Disease. Circulation. 2007;115(4):450-458. doi: https://doi.org/10.1161/CIRCULATIONAHA.106.637793

400. Chapman MJ, Ginsberg HN, Amarenco P, et al. Triglyceriderich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J. 2011;32(11):1345-1361. doi: https://doi.org/10.1093/eurheartj/ehr112

401. Fruchart J-C, Sacks FM, Hermans MP, et al. The Residual Risk Reduction Initiative: a call to action to reduce residual vascular risk in dyslipidaemic patients. Diabetes Vasc Dis Res. 2008;5(4):319-335. doi: https://doi.org/10.3132/dvdr.2008.046

402. Voight BF, Peloso GM, Orho-Melander M, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380(9841):572-580. doi: https://doi.org/10.1016/S0140-6736(12)60312-2

403. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140(11):623-632. doi: https://doi.org/10.1161/CIR.0000000000000678

404. Estruch R, Ros E, Salas-Salvadó J, et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N Engl J Med. 2018;378(25):e34. doi: https://doi.org/10.1056/NEJMoa1800389

405. Kim H, Caulfield LE, Garcia‐Larsen V, Steffen LM, Coresh J, Rebholz CM. Plant‐Based Diets Are Associated With a Lower Risk of Incident Cardiovascular Disease, Cardiovascular Disease Mortality, and All‐Cause Mortality in a General Population of Middle‐Aged Adults. J Am Heart Assoc. 2019;8(16). doi: https://doi.org/10.1161/JAHA.119.012865

406. Reedy J, Krebs-Smith SM, Miller PE, et al. Higher Diet Quality Is Associated with Decreased Risk of All-Cause, Cardiovascular Disease, and Cancer Mortality among Older Adults. J Nutr. 2014;144(6):881-889. doi: https://doi.org/10.3945/jn.113.189407

407. Satija A, Bhupathiraju SN, Spiegelman D, et al. Healthful and Unhealthful Plant-Based Diets and the Risk of Coronary Heart Disease in U.S. Adults. J Am Coll Cardiol. 2017;70(4):411-422. doi: https://doi.org/10.1016/j.jacc.2017.05.047

408. Sotos-Prieto M, Bhupathiraju SN, Mattei J, et al. Association of Changes in Diet Quality with Total and CauseSpecific Mortality. N Engl J Med. 2017;377(2):143-153. doi: https://doi.org/10.1056/NEJMoa1613502

409. Whalen KA, Judd S, McCullough ML, Flanders WD, Hartman TJ, Bostick RM. Paleolithic and Mediterranean Diet Pattern Scores Are Inversely Associated with All-Cause and CauseSpecific Mortality in Adults. J Nutr. 2017;147(4):612-620. doi: https://doi.org/10.3945/jn.116.241919

410. Bao Y, Han J, Hu FB, et al. Association of Nut Consumption with Total and Cause-Specific Mortality. N Engl J Med. 2013;369(21):2001-2011. doi: https://doi.org/10.1056/NEJMoa1307352

411. Bernstein AM, Sun Q, Hu FB, Stampfer MJ, Manson JE, Willett WC. Major Dietary Protein Sources and Risk of Coronary Heart Disease in Women. Circulation. 2010;122(9):876-883. doi: https://doi.org/10.1161/CIRCULATIONAHA.109.915165

412. Song M, Fung TT, Hu FB, et al. Association of Animal and Plant Protein Intake With All-Cause and Cause-Specific Mortality. JAMA Intern Med. 2016;176(10):1453. doi: https://doi.org/10.1001/jamainternmed.2016.4182

413. Tharrey M, Mariotti F, Mashchak A, et al. Patterns of plant and animal protein intake are strongly associated with cardiovascular mortality: the Adventist Health Study-2 cohort. Int J Epidemiol. 2018;47(5):1603-1612. doi: https://doi.org/10.1093/ije/dyy030

414. Martínez-González MA, Sánchez-Tainta A, Corella D, et al. A provegetarian food pattern and reduction in total mortality in the Prevención con Dieta Mediterránea (PREDIMED) study. Am J Clin Nutr. 2014;100(suppl_1):320S-328S. doi: https://doi.org/10.3945/ajcn.113.071431

415. Mensink RP, Zock PL, Kester ADM, Katan MB. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a metaanalysis of 60 controlled trials. Am J Clin Nutr. 2003;77(5):1146-1155. doi: https://doi.org/10.1093/ajcn/77.5.1146

416. Schwingshackl L, Bogensberger B, Benčič A, et al. Effects of oils and solid fats on blood lipids: a systematic review and network meta-analysis. J Lipid Res. 2018;59(9):1771-1782. doi: https://doi.org/10.1194/jlr.P085522

417. Kastorini C-M, Milionis HJ, Esposito K, et al. The Effect of Mediterranean Diet on Metabolic Syndrome and its Components. J Am Coll Cardiol. 2011;57(11):1299-1313. doi: https://doi.org/10.1016/j.jacc.2010.09.073

418. Grundy SM, Stone NJ. 2018 Cholesterol Clinical Practice Guidelines: Synopsis of the 2018 American Heart Association/American College of Cardiology/Multisociety Cholesterol Guideline*. Ann Intern Med. 2019;170(11):779. doi: https://doi.org/10.7326/M19-0365

419. Eckel RH, Jakicic JM, Ard JD, et al. 2013 AHA/ACC Guideline on Lifestyle Management to Reduce Cardiovascular Risk. Circulation. 2014;129(25 suppl 2):S76-S99. doi: https://doi.org/10.1161/01.cir.0000437740.48606.d1

420. Jensen MD, Ryan DH, Apovian CM, et al. 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults. Circulation. 2014;129(25 suppl 2):S102-S138. doi: https://doi.org/10.1161/01.cir.0000437739.71477.ee

421. Estruch R, Ros E, Salas-Salvadó J, et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N Engl J Med. 2018;378(25):e34. doi: https://doi.org/10.1056/NEJMoa1800389

422. Wang DD, Li Y, Chiuve SE, et al. Association of Specific Dietary Fats With Total and CauseSpecific Mortality. JAMA Intern Med. 2016;176(8):1134. doi: https://doi.org/10.1001/jamainternmed.2016.2417

423. Dehghan M, Mente A, Zhang X, et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet. 2017;390(10107):2050-2062. doi: https://doi.org/10.1016/S0140-6736(17)32252-3

424. Sacks FM, Svetkey LP, Vollmer WM, et al. Effects on Blood Pressure of Reduced Dietary Sodium and the Dietary Approaches to Stop Hypertension (DASH) Diet. N Engl J Med. 2001;344(1):3-10. doi: https://doi.org/10.1056/NEJM200101043440101

425. Cook NR, Cutler JA, Obarzanek E, et al. Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the trials of hypertension prevention (TOHP). BMJ. 2007;334(7599):885. doi: https://doi.org/10.1136/bmj.39147.604896.55

426. Micha R, Peñalvo JL, Cudhea F, et al. Association Between Dietary Factors and Mortality From Heart Disease, Stroke, and Type 2 Diabetes in the United States. JAMA. 2017;317(9):912. doi: https://doi.org/10.1001/jama.2017.0947

427. Kiage JN, Merrill PD, Robinson CJ, et al. Intake of trans fat and all-cause mortality in the Reasons for Geographical and Racial Differences in Stroke (REGARDS) cohort. Am J Clin Nutr. 2013;97(5):1121-1128. doi: https://doi.org/10.3945/ajcn.112.049064

428. Löfvenborg JE, Andersson T, Carlsson P-O, et al. Sweetened beverage intake and risk of latent autoimmune diabetes in adults (LADA) and type 2 diabetes. Eur J Endocrinol. 2016;175(6):605-614. doi: https://doi.org/10.1530/EJE-16-0376

429. Yang Q, Zhang Z, Gregg EW, et al. Added Sugar Intake and Cardiovascular Diseases Mortality Among US Adults. JAMA Intern Med. 2014;174(4):516. doi: https://doi.org/10.1001/jamainternmed.2013.13563

430. Johnson RK, Lichtenstein AH, Anderson CAM, et al. Low-Calorie Sweetened Beverages and Cardiometabolic Health: A Science Advisory From the American Heart Association. Circulation. 2018;138(9). doi: https://doi.org/10.1161/CIR.0000000000000569

431. Shikany JM, Safford MM, Newby PK, et al. Southern Dietary Pattern Is Associated With Hazard of Acute Coronary Heart Disease in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) Study. Circulation. 2015;132(9):804-814. doi: https://doi.org/10.1161/CIRCULATIONAHA.114.014421

432. Seidelmann SB, Claggett B, Cheng S, et al. Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. Lancet Public Heal. 2018;3(9):e419-e428. doi: https://doi.org/10.1016/S2468-2667(18)30135-X

433. Trichopoulou A, Psaltopoulou T, Orfanos P, Hsieh C-C, Trichopoulos D. Low-carbohydrate–high-protein diet and long-term survival in a general population cohort. Eur J Clin Nutr. 2007;61(5):575-581. doi: https://doi.org/10.1038/sj.ejcn.1602557

434. Noto H, Goto A, Tsujimoto T, Noda M. LowCarbohydrate Diets and All-Cause Mortality: A Systematic Review and Meta-Analysis of Observational Studies. Manzoli L, ed. PLoS One. 2013;8(1):e55030. doi: https://doi.org/10.1371/journal.pone.0055030

435. Brandt EJ, Myerson R, Perraillon MC, Polonsky TS. Hospital Admissions for Myocardial Infarction and Stroke Before and After the TransFatty Acid Restrictions in New York. JAMA Cardiol. 2017;2(6):627. doi: https://doi.org/10.1001/jamacardio.2017.0491

436. Micha R, Mozaffarian D. Trans fatty acids: effects on metabolic syndrome, heart disease and diabetes. Nat Rev Endocrinol. 2009;5(6):335-344. doi: https://doi.org/10.1038/nrendo.2009.79

437. Taskinen M-R, Söderlund S, Bogl LH, et al. Adverse effects of fructose on cardiometabolic risk factors and hepatic lipid metabolism in subjects with abdominal obesity. J Intern Med. 2017;282(2):187-201. doi: https://doi.org/10.1111/joim.12632

438. Saneei P, Salehi-Abargouei A, Esmaillzadeh A, Azadbakht L. Influence of Dietary Approaches to Stop Hypertension (DASH) diet on blood pressure: A systematic review and meta-analysis on randomized controlled trials. Nutr Metab Cardiovasc Dis. 2014;24(12):1253-1261. doi: https://doi.org/10.1016/j.numecd.2014.06.008

439. He FJ, Li J, MacGregor GA. Effect of longer-term modest salt reduction on blood pressure. Cochrane Database Syst Rev. April 2013. doi: https://doi.org/10.1002/14651858.CD004937.pub2

440. Neter JE, Stam BE, Kok FJ, et al. Influence of Weight Reduction on Blood Pressure. Hypertension. 2003;42(5):878-884. doi: https://doi.org/10.1161/01.HYP.0000094221.86888.AE

441. Rimm EB, Williams P, Fosher K, et al. Moderate alcohol intake and lower risk of coronary heart disease: meta-analysis of effects on lipids and haemostatic factors. BMJ. 1999;319(7224):1523-1528. doi: https://doi.org/10.1136/bmj.319.7224.1523

442. Brien SE, Ronksley PE, Turner BJ, et al. Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: systematic review and meta-analysis of interventional studies. BMJ. 2011;342(feb22 1):d636-d636. doi: https://doi.org/10.1136/bmj.d636

443. Griswold MG, Fullman N, Hawley C, et al. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018;392(10152):1015-1035. doi: https://doi.org/10.1016/S0140-6736(18)31310-2

444. Wood AM, Kaptoge S, Butterworth AS, et al. Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. Lancet. 2018;391(10129):1513-1523. doi: https://doi.org/10.1016/S0140-6736(18)30134-X

445. Huffman KM, Hawk VH, Henes ST, et al. Exercise effects on lipids in persons with varying dietary patterns—does diet matter if they exercise? Responses in Studies of a Targeted Risk Reduction Intervention through Defined Exercise I. Am Heart J. 2012;164(1):117-124. doi: https://doi.org/10.1016/j.ahj.2012.04.014

446. Kraus WE, Powell KE, Haskell WL, et al. Physical Activity, AllCause and Cardiovascular Mortality, and Cardiovascular Disease. Med Sci Sport Exerc. 2019;51(6):1270-1281. doi: https://doi.org/10.1249/MSS.0000000000001939

447. Piercy KL, Troiano RP, Ballard RM, et al. The Physical Activity Guidelines for Americans. JAMA. 2018;320(19):2020. doi: https://doi.org/10.1001/jama.2018.14854

448. Shaw KA, Gennat HC, O’Rourke P, Del Mar C. Exercise for overweight or obesity. Cochrane Database Syst Rev. October 2006. doi: https://doi.org/10.1002/14651858.CD003817.pub3

449. Yu-Poth S, Zhao G, Etherton T, et al. Effects of the National Cholesterol Education Program’s Step I and Step II dietary intervention programs on cardiovascular disease risk factors: a meta-analysis. Am J Clin Nutr. 1999;69(4):632-646. doi: https://doi.org/10.1093/ajcn/69.4.632

450. Kraus WE, Houmard JA, Duscha BD, et al. Effects of the Amount and Intensity of Exercise on Plasma Lipoproteins. N Engl J Med. 2002;347(19):1483-1492. doi: https://doi.org/10.1056/NEJMoa020194

451. Kodama S. Effect of Aerobic Exercise Training on Serum Levels of High-Density Lipoprotein Cholesterol. Arch Intern Med. 2007;167(10):999. doi: https://doi.org/10.1001/archinte.167.10.999

452. Kelley GA, Kelley KS. Impact of progressive resistance training on lipids and lipoproteins in adults: A meta-analysis of randomized controlled trials. Prev Med (Baltim). 2009;48(1):9-19. doi: https://doi.org/10.1016/j.ypmed.2008.10.010

453. Kelley GA, Kelley KS, Franklin B. Aerobic Exercise and Lipids and Lipoproteins in Patients With Cardiovascular Disease. J Cardiopulm Rehabil. 2006;26(3):131-139. doi: https://doi.org/10.1097/00008483-200605000-00002

454. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric Surgery. JAMA. 2004;292(14):1724. doi: https://doi.org/10.1001/jama.292.14.1724

455. Heffron SP, Parikh A, Volodarskiy A, et al. Changes in Lipid Profile of Obese Patients Following Contemporary Bariatric Surgery: A Meta-Analysis. Am J Med. 2016;129(9):952-959. doi: https://doi.org/10.1016/j.amjmed.2016.02.004

456. Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670-1681. doi: https://doi.org/10.1016/S0140-6736(10)61350-5

457. Fulcher J, O’Connell R, Voysey M, et al. Efficacy and safety of LDL-lowering therapy among men and women: metaanalysis of individual data from 174 000 participants in 27 randomised trials. Lancet. 2015;385(9976):1397-1405. doi: https://doi.org/10.1016/S0140-6736(14)61368-4

458. Schwartz GG, Steg PG, Szarek M, et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N Engl J Med. 2018;379(22):2097-2107. doi: https://doi.org/10.1056/NEJMoa1801174

459. Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med. 2017;376(18):1713-1722. doi: https://doi.org/10.1056/NEJMoa1615664

460. Cannon CP, Steinberg BA, Murphy SA, et al. Meta-Analysis of Cardiovascular Outcomes Trials Comparing Intensive Versus Moderate Statin Therapy. J Am Coll Cardiol. 2006;48(3):438-445. doi: https://doi.org/10.1016/j.jacc.2006.04.070

461. Amarenco P, Labreuche J, Lavallée P, Touboul P-J. Statins in Stroke Prevention and Carotid Atherosclerosis. Stroke. 2004;35(12):2902-

462. doi: https://doi.org/10.1161/01.STR.0000147965.52712.fa

463. Cholesterol Treatment Trialists’ (CTT) Collaborators. Efficacy of cholesterol-lowering therapy in 18 686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371(9607):117-125. doi: https://doi.org/10.1016/S0140-6736(08)60104-X

464. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90 056 participants in 14 randomised trials of statins. Lancet. 2005;366(9493):1267-1278. doi: https://doi.org/10.1016/S0140-6736(05)67394-1

465. Wang J, Chen D, Li D-B, Yu X, Shi G-B. Comparison of the efficacy and safety of intensive-dose and standard-dose statin treatment for stroke prevention. Medicine (Baltimore). 2016;95(39):e4950. doi: https://doi.org/10.1097/MD.0000000000004950

466. Pandor A, Ara RM, Tumur I, et al. Ezetimibe monotherapy for cholesterol lowering in 2,722 people: systematic review and meta-analysis of randomized controlled trials. J Intern Med. 2009;265(5):568-580. doi: https://doi.org/10.1111/j.1365-2796.2008.02062.x

467. Morrone D, Weintraub WS, Toth PP, et al. Lipid-altering efficacy of ezetimibe plus statin and statin monotherapy and identification of factors associated with treatment response: A pooled analysis of over 21,000 subjects from 27 clinical trials. Atherosclerosis. 2012;223(2):251-261. doi: https://doi.org/10.1016/j.atherosclerosis.2012.02.016

468. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111-188. doi: https://doi.org/10.1093/eurheartj/ehz455

469. Диагностика и коррекция нарушений липидного обмена с целью профилактики и лечения атеросклероза. Российские рекомендации, VII пересмотр // Атеросклероз и Дислипидемии. — 2020. — Т.38. — №1. — C.7-42. doi: https://doi.org/10.34687/2219-8202.JAD.2020.01.0002

470. Bhatt DL, Steg PG, Miller M, et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N Engl J Med. 2019;380(1):11-22. doi: https://doi.org/10.1056/NEJMoa1812792

471. Harris WS, Ginsberg HN, Arunakul N, et al. Safety and efficacy of Omacor in severe hypertriglyceridemia. J Cardiovasc Risk. 1997;4(5):385-391. doi: https://doi.org/10.1097/00043798-199710000-00011

472. Skulas-Ray AC, Wilson PWF, Harris WS, et al. Omega-3 Fatty Acids for the Management of Hypertriglyceridemia: A Science Advisory From the American Heart Association. Circulation. 2019;140(12):111-188. doi: https://doi.org/10.1161/CIR.0000000000000709

473. Maki KC, Guyton JR, Orringer CE, Hamilton-Craig I, Alexander DD, Davidson MH. Triglyceride-lowering therapies reduce cardiovascular disease event risk in subjects with hypertriglyceridemia. J Clin Lipidol. 2016;10(4):905-914. doi: https://doi.org/10.1016/j.jacl.2016.03.008

474. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366(9500):1849-1861. doi: https://doi.org/10.1016/S0140-6736(05)67667-2

475. Kim NH, Han KH, Choi J, Lee J, Kim SG. Use of fenofibrate on cardiovascular outcomes in statin users with metabolic syndrome: propensity matched cohort study. BMJ. September 2019:l5125. doi: https://doi.org/10.1136/bmj.l5125

476. Kenchaiah S, Evans JC, Levy D, et al. Obesity and the Risk of Heart Failure. N Engl J Med. 2002;347(5):305-313. doi: https://doi.org/10.1056/NEJMoa020245

477. Pandey A, LaMonte M, Klein L, et al. Relationship Between Physical Activity, Body Mass Index, and Risk of Heart Failure. J Am Coll Cardiol. 2017;69(9):1129-1142. doi: https://doi.org/10.1016/j.jacc.2016.11.081

478. Elagizi A, Kachur S, Lavie CJ, et al. An Overview and Update on Obesity and the Obesity Paradox in Cardiovascular Diseases. Prog Cardiovasc Dis. 2018;61(2):142-150. doi: https://doi.org/10.1016/j.pcad.2018.07.003

479. Obokata M, Reddy YNV, Pislaru S V., Melenovsky V, Borlaug BA. Evidence Supporting the Existence of a Distinct Obese Phenotype of Heart Failure With Preserved Ejection Fraction. Circulation. 2017;136(1):6-19. doi: https://doi.org/10.1161/CIRCULATIONAHA.116.026807

480. Packer M. The conundrum of patients with obesity, exercise intolerance, elevated ventricular filling pressures and a measured ejection fraction in the normal range. Eur J Heart Fail. 2019;21(2):156-162. doi: https://doi.org/10.1002/ejhf.1377

481. Padwal R, McAlister FA, McMurray JJ V, et al. The obesity paradox in heart failure patients with preserved versus reduced ejection fraction: a meta-analysis of individual patient data. Int J Obes. 2014;38(8):1110-1114. doi: https://doi.org/10.1038/ijo.2013.203

482. Carbone S, Canada JM, Buckley LF, et al. Obesity Contributes to Exercise Intolerance in Heart Failure With Preserved Ejection Fraction. J Am Coll Cardiol. 2016;68(22):2487-2488. doi: https://doi.org/10.1016/j.jacc.2016.08.072

483. Ross R, Blair SN, Arena R, et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. Circulation. 2016;134(24). doi: https://doi.org/10.1161/CIR.0000000000000461

484. Miller SL, Wolfe RR. The danger of weight loss in the elderly. J Nutr Heal Aging. 2008;12(7):487-491. doi: https://doi.org/10.1007/BF02982710

485. Carbone S, Canada JM, Buckley LF, et al. Dietary Fat, Sugar Consumption, and Cardiorespiratory Fitness in Patients With Heart Failure With Preserved Ejection Fraction. JACC Basic to Transl Sci. 2017;2(5):513-525. doi: https://doi.org/10.1016/j.jacbts.2017.06.009

486. Pack QR, Rodriguez-Escudero JP, Thomas RJ, et al. The Prognostic Importance of Weight Loss in Coronary Artery Disease: A Systematic Review and Meta-analysis. Mayo Clin Proc. 2014;89(10):1368-1377. doi: https://doi.org/10.1016/j.mayocp.2014.04.033

487. Poirier P, Giles TD, Bray GA, et al. Obesity and Cardiovascular Disease. Arterioscler Thromb Vasc Biol. 2006;26(5):968-976. doi: https://doi.org/10.1161/01.ATV.0000216787.85457.f3

488. Kenchaiah S, Evans JC, Levy D, et al. Obesity and the Risk of Heart Failure. N Engl J Med. 2002;347(5):305-313. doi: https://doi.org/10.1056/NEJMoa020245

489. Curtis JP, Selter JG, Wang Y, et al. The Obesity Paradox. Arch Intern Med. 2005;165(1):55. doi: https://doi.org/10.1001/archinte.165.1.55

490. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA Guideline for the Management of Heart Failure. J Am Coll Cardiol. 2013;62(16):e147-e239. doi: https://doi.org/10.1016/j.jacc.2013.05.019

491. McMurray JJ V., Adamopoulos S, Anker SD, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart. Eur Heart J. 2012;33(14):1787-1847. doi: https://doi.org/10.1093/eurheartj/ehs104

492. Williamson DF. Weight loss and mortality in persons with type-2 diabetes mellitus: a review of the epidemiological evidence. Exp Clin Endocrinol Diabetes. 2009;106(S 02):14-21. doi: https://doi.org/10.1055/s-0029-1212031

493. Kritchevsky SB, Beavers KM, Miller ME, et al. Intentional Weight Loss and All-Cause Mortality: A Meta-Analysis of Randomized Clinical Trials. Wu W-CH, ed. PLoS One. 2015;10(3):e0121993. doi: https://doi.org/10.1371/journal.pone.0121993

494. Kenchaiah S, Evans JC, Levy D, et al. Cardiovascular Effects of Intensive Lifestyle Intervention in Type 2 Diabetes. N Engl J Med. 2013;369(2):145-154. doi: https://doi.org/10.1056/NEJMoa1212914

495. van Dijk SB, Takken T, Prinsen EC, Wittink H. Different anthropometric adiposity measures and their association with cardiovascular disease risk factors: a meta-analysis. Netherlands Hear J. 2012;20(5):208-218. doi: https://doi.org/10.1007/s12471-011-0237-7

496. Lazo M, Clark J. The Epidemiology of Nonalcoholic Fatty Liver Disease: A Global Perspective. Semin Liver Dis. 2008;28(04):339-350. doi: https://doi.org/10.1055/s-0028-1091978

497. Misra VL, Khashab M, Chalasani N. Nonalcoholic fatty liver disease and cardiovascular risk. Curr Gastroenterol Rep. 2009;11(1):50-55. doi: https://doi.org/10.1007/s11894-009-0008-4

498. Stefan N, Kantartzis K, Häring H-U. Causes and Metabolic Consequences of Fatty Liver. Endocr Rev. 2008;29(7):939-960. doi: https://doi.org/10.1210/er.2008-0009

499. Musso G, Gambino R, Cassader M. Non-alcoholic fatty liver disease from pathogenesis to management: an update. Obes Rev. 2009;11(6):430-445. doi: https://doi.org/10.1111/j.1467-789X.2009.00657.x

500. Dowman JK, Tomlinson JW, Newsome PN. Pathogenesis of non-alcoholic fatty liver disease. QJM. 2010;103(2):71-83. doi: https://doi.org/10.1093/qjmed/hcp158

501. Nafisa A, Gray SG, Cao Y, et al. Endothelial function and dysfunction: Impact of metformin. Pharmacol Ther. 2018;192(1):150-162. doi: https://doi.org/10.1016/j.pharmthera.2018.07.007

502. Ong JP, Younossi ZM. Epidemiology and Natural History of NAFLD and NASH. Clin Liver Dis. 2007;11(1):1-16. doi: https://doi.org/10.1016/j.cld.2007.02.009

503. Leite NC, Salles GF, Araujo ALE, Villela-Nogueira CA, Cardoso CRL. Prevalence and associated factors of non-alcoholic fatty liver disease in patients with type-2 diabetes mellitus. Liver Int. 2009;29(1):113-119. doi: https://doi.org/10.1111/j.1478-3231.2008.01718.x

504. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Metaanalytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73-84. doi: https://doi.org/10.1002/hep.28431

505. Nafisa A, Gray SG, Cao Y, et al. EASL–EASD–EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64(6):1388-1402. doi: https://doi.org/10.1016/j.jhep.2015.11.004

506. Chalasani N, Younossi Z, Lavine JE, et al. The Diagnosis and Management of Non-alcoholic Fatty Liver Disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Am J Gastroenterol. 2012;107(6):811-826. doi: https://doi.org/10.1038/ajg.2012.128

507. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328-357. doi: https://doi.org/10.1002/hep.29367

508. Karlas T, Petroff D, Sasso M, et al. Individual patient data metaanalysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol. 2017;66(5):1022-1030. doi: https://doi.org/10.1016/j.jhep.2016.12.022

509. Siddiqui MS, Vuppalanchi R, Van Natta ML, et al. Vibration-Controlled Transient Elastography to Assess Fibrosis and Steatosis in Patients With Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol. 2019;17(1):156-163.e2. doi: https://doi.org/10.1016/j.cgh.2018.04.043

510. Eddowes PJ, Sasso M, Allison M, et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology. 2019;156(6):1717-1730. doi: https://doi.org/10.1053/j.gastro.2019.01.042

511. Katsagoni CN, Georgoulis M, Papatheodoridis G V., Panagiotakos DB, Kontogianni MD. Effects of lifestyle interventions on clinical characteristics of patients with non-alcoholic fatty liver disease: A meta-analysis. Metabolism. 2017;68:119-132. doi: https://doi.org/10.1016/j.metabol.2016.12.006

512. Romero-Gómez M, Zelber-Sagi S, Trenell M. Treatment of NAFLD with diet, physical activity and exercise. J Hepatol. 2017;67(4):829-846. doi: https://doi.org/10.1016/j.jhep.2017.05.016

513. Vilsboll T, Christensen M, Junker AE, Knop FK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic

514. review and meta-analyses of randomised controlled trials. BMJ. 2012;344(jan10 2):d7771-d7771. doi: https://doi.org/10.1136/bmj.d7771

515. Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebocontrolled phase 2 study. Lancet. 2016;387(10019):679-690. doi: https://doi.org/10.1016/S0140-6736(15)00803-X

516. Musso G, Gambino R, Cassader M, Pagano G. A meta-analysis of randomized trials for the treatment of nonalcoholic fatty liver disease. Hepatology. 2010;52(1):79-104. doi: https://doi.org/10.1002/hep.23623

517. Li Y, Liu L, Wang B, et al. Metformin in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Biomed Reports. 2013;1(1):57-64. doi: https://doi.org/10.3892/br.2012.18

518. Siddiqui MS, Vuppalanchi R, Van Natta ML, et al. Reduction in the Incidence of Type 2 Diabetes with Lifestyle Intervention or Metformin. N Engl J Med. 2002;346(6):393-403. doi: https://doi.org/10.1056/NEJMoa012512

519. Doycheva I, Loomba R. Effect of Metformin on Ballooning Degeneration in Nonalcoholic Steatohepatitis (NASH): When to Use Metformin in Nonalcoholic Fatty Liver Disease (NAFLD). Adv Ther. 2014;31(1):30-43. doi: https://doi.org/10.1007/s12325-013-0084-6

520. Garinis GA, Fruci B, Mazza A, et al. Metformin versus dietary treatment in nonalcoholic hepatic steatosis: a randomized study. Int J Obes. 2010;34(8):1255-1264. doi: https://doi.org/10.1038/ijo.2010.40

521. Nair S, Diehl AM, Wiseman M, Farr GH, Perrillo RP. Metformin in the treatment of non-alcoholic steatohepatitis: a pilot open label trial. Aliment Pharmacol Ther. 2004;20(1):23-28. doi: https://doi.org/10.1111/j.1365-2036.2004.02025.x

522. Loomba R, Lutchman G, Kleiner DE, et al. Clinical trial: pilot study of metformin for the treatment of non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2009;29(2):172-182. doi: https://doi.org/10.1111/j.1365-2036.2008.03869.x

523. de Oliveira CPMS, Stefano JT, de Siqueira ERF, et al. Combination of N-acetylcysteine and metformin improves histological steatosis and fibrosis in patients with nonalcoholic steatohepatitis. Hepatol Res. 2007;38:159-165. doi: https://doi.org/10.1111/j.1872-034X.2007.00215.x

524. Shields WW, Thompson KE, Grice GA, et al. The effect of metformin and standard therapy versus standard therapy alone in nondiabetic patients with insulin resistance and nonalcoholic steatohepatitis (NASH): a pilot trial. Therap Adv Gastroenterol. 2009;2(3):157-163. doi: https://doi.org/10.1177/1756283X09105462

525. Uygun A, Kadayifci A, Isik AT, et al. Metformin in the treatment of patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2004;19(5):537-544. doi: https://doi.org/10.1111/j.1365-2036.2004.01888.x

526. Haukeland JW, Konopski Z, Eggesbø HB, et al. Metformin in patients with non-alcoholic fatty liver disease: A randomized, controlled trial. Scand J Gastroenterol. 2009;44(7):853-860. doi: https://doi.org/10.1080/00365520902845268

527. Sanyal AJ, Chalasani N, Kowdley K V., et al. Pioglitazone, Vitamin E, or Placebo for Nonalcoholic Steatohepatitis. N Engl J Med. 2010;362(18):1675-1685. doi: https://doi.org/10.1056/NEJMoa0907929

528. Sato K, Gosho M, Yamamoto T, et al. Vitamin E has a beneficial effect on nonalcoholic fatty liver disease: A meta-analysis of randomized controlled trials. Nutrition. 2015;31(7-8):923-930. doi: https://doi.org/10.1016/j.nut.2014.11.018

529. Xu R, Tao A, Zhang S, et al. Association between vitamin E and non-alcoholic steatohepatitis: a meta-analysis. Int J Clin Exp Med. 2015;8(3):3924-3934.

530. Miller ER, Pastor-Barriuso R, Dalal D, et al. Meta-Analysis: High-Dosage Vitamin E Supplementation May Increase All-Cause Mortality. Ann Intern Med. 2005;142(1):37. doi: https://doi.org/10.7326/0003-4819-142-1-200501040-00110

531. Miller ER, Pastor-Barriuso R, Dalal D, et al. Meta-Analysis: High-Dosage Vitamin E Supplementation May Increase All-Cause Mortality. Ann Intern Med. 2005;142(1):37. doi: https://doi.org/10.7326/0003-4819-142-1-200501040-00110

532. Lassailly G, Caiazzo R, Buob D, et al. Bariatric Surgery Reduces Features of Nonalcoholic Steatohepatitis in Morbidly Obese Patients. Gastroenterology. 2015;149(2):379-388. doi: https://doi.org/10.1053/j.gastro.2015.04.014

533. Bower G, Toma T, Harling L, et al. Bariatric Surgery and NonAlcoholic Fatty Liver Disease: a Systematic Review of Liver Biochemistry and Histology. Obes Surg. 2015;25(12):2280-2289. doi: https://doi.org/10.1007/s11695-015-1691-x

534. Volkert D, Beck AM, Cederholm T, et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin Nutr. 2019;38(1):10-47. doi: https://doi.org/10.1016/j.clnu.2018.05.024

535. Gallus S, Lugo A, Murisic B, Bosetti C, Boffetta P, La Vecchia C. Overweight and obesity in 16 European countries. Eur J Nutr. 2015;54(5):679-689. doi: https://doi.org/10.1007/s00394-014-0746-4

536. Porter Starr K, McDonald S, Weidner J, Bales C. Challenges in the Management of Geriatric Obesity in High Risk Populations. Nutrients. 2016;8(5):262. doi: https://doi.org/10.3390/nu8050262

537. Kuk JL, Ardern CI. Influence of Age on the Association Between Various Measures of Obesity and All-Cause Mortality. J Am Geriatr Soc. 2009;57(11):2077-2084. doi: https://doi.org/10.1111/j.1532-5415.2009.02486.x

538. Roubenoff R. Sarcopenic Obesity: The Confluence of Two Epidemics. Obes Res. 2004;12(6):887-888. doi: https://doi.org/10.1038/oby.2004.107

539. Stessman J, Jacobs JM, Ein-Mor E, Bursztyn M. Normal Body Mass Index Rather than Obesity Predicts Greater Mortality in Elderly People: The Jerusalem Longitudinal Study. J Am Geriatr Soc. 2009;57(12):2232-2238. doi: https://doi.org/10.1111/j.1532-5415.2009.02567.x

540. Schott AM, Cormier C, Hans D, et al. How Hip and Whole-Body Bone Mineral Density Predict Hip Fracture in Elderly Women: The EPIDOS Prospective Study. Osteoporos Int. 1998;8(3):247-254. doi: https://doi.org/10.1007/s001980050061

541. WHO Consultation on Obesity (1997: Geneva, Switzerland), World Health Organization. Division of Noncommunicable Diseases & World Health Organization. Programme of Nutrition, Family and Reproductive Health. (1998). Obesity: preventing and managing the global epidemic: report of a WHO Consultation on Obesity, Geneva, 3-5 June 1997. World Health Organization. Available at: https://apps.who.int/iris/handle/10665/63854

542. Stallings DT, Kraenzle Schneider J. Motivational Interviewing and Fat Consumption in Older Adults: A Meta-Analysis. J Gerontol Nurs. 2018;44(11):33-43. doi: https://doi.org/10.3928/00989134-20180817-01

543. Kriaucioniene V, Petkeviciene J, Raskiliene A. Nutrition and physical activity counselling by general practitioners in Lithuania, 2000–2014. BMC Fam Pract. 2019;20(1):125. doi: https://doi.org/10.1186/s12875-019-1022-8

544. Schultz TJ, Roupas P, Wiechula R, et al. Nutritional interventions for optimizing healthy body composition in older adults in the community. JBI Database Syst Rev Implement Reports. 2016;14(8):257-308. doi: https://doi.org/10.11124/JBISRIR-2016-003063

545. Normandin E, Houston DK, Nicklas BJ. Caloric Restriction for Treatment of Geriatric Obesity: Do the Benefits Outweigh the Risks? Curr Nutr Rep. 2015;4(2):143-155. doi: https://doi.org/10.1007/s13668-015-0123-9

546. Mathus-Vliegen EMH, Basdevant A, Finer N, et al. Prevalence, Pathophysiology, Health Consequences and Treatment Options of Obesity in the Elderly: A Guideline. Obes Facts. 2012;5(3):460-483. doi: https://doi.org/10.1159/000341193

547. Goisser S, Kemmler W, Porzel S, et al. Sarcopenic obesity and complex interventions with nutrition and exercise in communitydwelling older persons – A narrative review. Clin Interv Aging. 2015. doi: https://doi.org/10.2147/CIA.S82454

548. Kuk JL, Ardern CI. Influence of Age on the Association Between Various Measures of Obesity and All-Cause Mortality. J Am Geriatr Soc. 2009;57(11):2077-2084. doi: https://doi.org/10.1111/j.1532-5415.2009.02486.x

549. Stessman J, Jacobs JM, Ein-Mor E, Bursztyn M. Normal Body Mass Index Rather than Obesity Predicts Greater Mortality in Elderly People: The Jerusalem Longitudinal Study. J Am Geriatr Soc. 2009;57(12):2232-2238. doi: https://doi.org/10.1111/j.1532-5415.2009.02567.x

550. Schott AM, Cormier C, Hans D, et al. How Hip and Whole-Body Bone Mineral Density Predict Hip Fracture in Elderly Women: The EPIDOS Prospective Study. Osteoporos Int. 1998;8(3):247-254. doi: https://doi.org/10.1007/s001980050061

551. Stenholm S, Harris TB, Rantanen T, Visser M, Kritchevsky SB, Ferrucci L. Sarcopenic obesity: definition, cause and consequences. Curr Opn Clin Nutr Metab Care. 2008;11(6):693-700. doi: https://doi.org/10.1097/MCO.0b013e328312c37d

552. Garvey WT, Mechanick JI, Brett EM, et al. American Association of Clinical Endocrinologists and American College of Endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr Pract. 2016;22:1-203. doi: https://doi.org/10.4158/EP161365.GL

553. Expert panel report: Guidelines (2013) for the management of overweight and obesity in adults. Obesity. 2014;22(S2):S41-S410. doi: https://doi.org/10.1002/oby.20660

554. Villareal DT, Apovian CM, Kushner RF, Klein S. Obesity in Older Adults: Technical Review and Position Statement of the American Society for Nutrition and NAASO, The Obesity Society. Obes Res. 2005;13(11):1849-1863. doi: https://doi.org/10.1038/oby.2005.228

555. Visvanathan R, Haywood C, Piantadosi C, Appleton S. Australian and New Zealand Society for Geriatric Medicine. Australas J Ageing. 2012;31(4):261-267. doi: https://doi.org/10.1111/j.1741-6612.2012.00652.x

556. Di Angelantonio E, Bhupathiraju SN, Wormser D, et al. Body-mass index and all-cause mortality: individual-participant-data meta- analysis of 239 prospective studies in four continents. Lancet. 2016;388(10046):776-786. doi: https://doi.org/10.1016/S0140-6736(16)30175-1

557. Winter JE, MacInnis RJ, Wattanapenpaiboon N, Nowson CA. BMI and all-cause mortality in older adults: a meta-analysis. Am J Clin Nutr. 2014;99(4):875-890. doi: https://doi.org/10.3945/ajcn.113.068122

558. Flegal KM, Kit BK, Orpana H, Graubard BI. Association of All-Cause Mortality With Overweight and Obesity Using Standard Body Mass Index Categories. JAMA. 2013;309(1):71. doi: https://doi.org/10.1001/jama.2012.113905

559. Cetin DC, Nasr G. Obesity in the elderly: More complicated than you think. Cleve Clin J Med. 2014;81(1):51-61. doi: https://doi.org/10.3949/ccjm.81a.12165

560. Parr EB, Coffey VG, Hawley JA. ‘Sarcobesity’: A metabolic conundrum. Maturitas. 2013;74(2):109-113. doi: https://doi.org/10.1016/j.maturitas.2012.10.014

561. Volpe SL, Sukumar D, Milliron B-J. Obesity Prevention in Older Adults. Curr Obes Rep. 2016;5(2):166-175. doi: https://doi.org/10.1007/s13679-016-0213-z

562. DiMilia PR, Mittman AC, Batsis JA. Benefit-to-Risk Balance of Weight Loss Interventions in Older Adults with Obesity. Curr Diab Rep. 2019;19(11):114. doi: https://doi.org/10.1007/s11892-019-1249-8

563. Batsis JA, Zagaria AB. Addressing Obesity in Aging Patients. Med Clin North Am. 2018;102(1):65-85. doi: https://doi.org/10.1016/j.mcna.2017.08.007

564. Fan H, Li X, Zheng L, et al. Abdominal obesity is strongly associated with Cardiovascular Disease and its Risk Factors in Elderly and very Elderly Community-dwelling Chinese. Sci Rep. 2016;6(1):21521. doi: https://doi.org/10.1038/srep21521

565. Tussing-Humphreys L, Lamar M, Blumenthal JA, et al. Building research in diet and cognition: The BRIDGE randomized controlled trial. Contemp Clin Trials. 2017;59:87-97. doi: https://doi.org/10.1016/j.cct.2017.06.003

566. Leavy J, Clifton P, Keogh J. The Role of Choice in Weight Loss Strategies: A Systematic Review and Meta-Analysis. Nutrients. 2018;10(9):1136. doi: https://doi.org/10.3390/nu10091136

567. Colpani V, Baena CP, Jaspers L, et al. Lifestyle factors, cardiovascular disease and all-cause mortality in middle-aged and elderly women: a systematic review and meta-analysis. Eur J Epidemiol. 2018;33(9):831-845. doi: https://doi.org/10.1007/s10654-018-0374-z

568. Gill LE, Bartels SJ, Batsis JA. Weight Management in Older Adults. Curr Obes Rep. 2015;4(3):379-388. doi: https://doi.org/10.1007/s13679-015-0161-z

569. Wojzischke J, Diekmann R, Bauer JM. Adipositas im Alter und ihre Bedeutung für Funktionalität und Frailty. Z Gerontol Geriatr. 2016;49(7):573-580. doi: https://doi.org/10.1007/s00391-016-1133-y

570. Ard JD, Gower B, Hunter G, et al. Effects of Calorie Restriction in Obese Older Adults: The CROSSROADS Randomized Controlled Trial. Journals Gerontol Ser A Biol Sci Med Sci. 2017;73(1):73-80. doi: https://doi.org/10.1093/gerona/glw237

571. Haas MC, Bodner E V., Brown CJ, et al. Calorie Restriction in Overweight Seniors: Response of Older Adults to a Dieting Study: The CROSSROADS Randomized Controlled Clinical Trial. J Nutr Gerontol Geriatr. 2014;33(4):376-400. doi: https://doi.org/10.1080/21551197.2014.965993

572. Mathus-Vliegen L, Toouli J, Fried M, et al. World Gastroenterology Organisation Global Guidelines on Obesity. J Clin Gastroenterol. 2012;46(7):555-561. doi: https://doi.org/10.1097/MCG.0b013e318259bd04

573. Zeanandin G, Molato O, Le Duff F, et al. Impact of restrictive diets on the risk of undernutrition in a free-living elderly population. Clin Nutr. 2012;31(1):69-73. doi: https://doi.org/10.1016/j.clnu.2011.08.007

574. Coker RH, Wolfe RR. Weight Loss Strategies in the Elderly: A Clinical Conundrum. Obesity. 2018;26(1):22-28. doi: https://doi.org/10.1002/oby.21961

575. Villareal DT, Aguirre L, Gurney AB, et al. Aerobic or Resistance Exercise, or Both, in Dieting Obese Older Adults. N Engl J Med. 2017;376(20):1943-1955. doi: https://doi.org/10.1056/NEJMoa1616338

576. Villareal DT, Aguirre L, Gurney AB, et al. Aerobic or Resistance Exercise, or Both, in Dieting Obese Older Adults. N Engl J Med.

577. ;376(20):1943-1955. doi: https://doi.org/10.1056/NEJMoa1616338

578. Villareal DT, Chode S, Parimi N, et al. Weight Loss, Exercise, or Both and Physical Function in Obese Older Adults. N Engl J Med. 2011;364(13):1218-1229. doi: https://doi.org/10.1056/NEJMoa1008234

579. Frimel TN, Sinacore DR, Villareal DT. Exercise Attenuates the Weight-Loss-Induced Reduction in Muscle Mass in Frail Obese Older Adults. Med Sci Sport Exerc. 2008;40(7):1213-1219. doi: https://doi.org/10.1249/MSS.0b013e31816a85ce

580. Avila JJ, Gutierres JA, Sheehy ME, et al. Effect of moderate intensity resistance training during weight loss on body composition and physical performance in overweight older adults. Eur J Appl Physiol. 2010;109(3):517-525. doi: https://doi.org/10.1007/s00421-010-1387-9

581. Shah K, Stufflebam A, Hilton TN, Sinacore DR, Klein S, Villareal DT. Diet and Exercise Interventions Reduce Intrahepatic Fat Content and Improve Insulin Sensitivity in Obese Older Adults. Obesity. 2009;17(12):2162-2168. doi: https://doi.org/10.1038/oby.2009.126

582. Messier SP, Mihalko SL, Legault C, et al. Effects of Intensive Diet and Exercise on Knee Joint Loads, Inflammation, and Clinical Outcomes Among Overweight and Obese Adults With Knee Osteoarthritis. JAMA. 2013;310(12):1263. doi: https://doi.org/10.1001/jama.2013.277669

583. Chomentowski P, Dube JJ, Amati F, et al. Moderate Exercise Attenuates the Loss of Skeletal Muscle Mass That Occurs With Intentional Caloric Restriction-Induced Weight Loss in Older, Overweight to Obese Adults. Journals Gerontol Ser A Biol Sci Med Sci. 2009;64A(5):575-580. doi: https://doi.org/10.1093/gerona/glp007

584. Campbell WW, Haub MD, Wolfe RR, et al. Resistance Training Preserves Fat-free Mass Without Impacting Changes in Protein Metabolism After Weight Loss in Older Women. Obesity. 2009;17(7):1332-1339. doi: https://doi.org/10.1038/oby.2009.2

585. Dunstan DW, Daly RM, Owen N, et al. High-Intensity Resistance Training Improves Glycemic Control in Older Patients With Type 2 Diabetes. Diabetes Care. 2002;25(10):1729-1736. doi: https://doi.org/10.2337/diacare.25.10.1729

586. Kitzman DW, Brubaker P, Morgan T, et al. Effect of Caloric Restriction or Aerobic Exercise Training on Peak Oxygen Consumption and Quality of Life in Obese Older Patients With Heart Failure With Preserved Ejection Fraction. JAMA. 2016;315(1):36. doi: https://doi.org/10.1001/jama.2015.17346

587. Amati F, Dubé JJ, Shay C, Goodpaster BH. Separate and combined effects of exercise training and weight loss on exercise efficiency and substrate oxidation. J Appl Physiol. 2008;105(3):825-831. doi: https://doi.org/10.1152/japplphysiol.90384.2008

588. Messier SP, Loeser RF, Miller GD, et al. Exercise and dietary weight loss in overweight and obese older adults with knee osteoarthritis: The arthritis, diet, and activity promotion trial. Arthritis Rheum. 2004;50(5):1501-1510. doi: https://doi.org/10.1002/art.20256

589. Rejeski WJ, Ambrosius WT, Burdette JH, Walkup MP, Marsh AP. Community Weight Loss to Combat Obesity and Disability in At-Risk Older Adults. Journals Gerontol Ser A Biol Sci Med Sci. 2017;72(11):1547e53. doi: https://doi.org/10.1093/gerona/glw252

590. Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, et al. Exercise and Physical Activity for Older Adults. Med Sci Sport Exerc. 2009;41(7):1510-1530. doi: https://doi.org/10.1249/MSS.0b013e3181a0c95c

591. Moore G, Durstine JL, Painter P, Medicine AcoS. ACSM’s exercise management for persons with chronic diseases and disabilities. 4E: Human Kinetics; 2016.

592. Janssen I, Mark AE. Elevated body mass index and mortality risk in the elderly. Obes Rev. 2007;8(1):41-59. doi: https://doi.org/10.1111/j.1467-789X.2006.00248.x

593. Adams KF, Schatzkin A, Harris TB, et al. Overweight, Obesity, and Mortality in a Large Prospective Cohort of Persons 50 to 71 Years Old. N Engl J Med. 2006;355(8):763-778. doi: https://doi.org/10.1056/NEJMoa055643

594. Carbone S, Dixon DL. Selecting appropriate weight loss pharmacotherapies in older adults to reduce cardiovascular risk. Expert Opin Pharmacother. 2018;19(13):1399-1402. doi: https://doi.org/10.1080/14656566.2018.1511704

595. Baumgartner RN. Body Composition in Healthy Aging. Ann N Y Acad Sci. 2006;904(1):437-448. doi: https://doi.org/10.1111/j.1749-6632.2000.tb06498.x

596. Государственный реестр лекарственных средств Министерства здравоохранения РФ. Available at: https://grls.rosminzdrav.ru/grls.aspx

597. Lavie CJ, Sharma A, Alpert MA, et al. Update on Obesity and Obesity Paradox in Heart Failure. Prog Cardiovasc Dis. 2016;58(4):393-400. doi: https://doi.org/10.1016/j.pcad.2015.12.003

598. Carbone S, Popovic D, Lavie CJ, Arena R. Obesity, body composition and cardiorespiratory fitness in heart failure with preserved ejection fraction. Future Cardiol. 2017;13(5):451-463. doi: https://doi.org/10.2217/fca-2017-0023

599. Carbone S, Lavie CJ, Arena R. Obesity and Heart Failure: Focus on the Obesity Paradox. Mayo Clin Proc. 2017;92(2):266-279. doi: https://doi.org/10.1016/j.mayocp.2016.11.001

600. Lavie CJ, Carbone S, Agarwal MA. An obesity paradox with myocardial infarction in the elderly. Nutrition. 2018;46:122-123. doi: https://doi.org/10.1016/j.nut.2017.08.003

601. Wang ZJ, Zhou YJ, Galper BZ, et al. Association of body mass index with mortality and cardiovascular events for patients with coronary artery disease: a systematic review and meta-analysis. Heart. 2015;101(20):1631-1638. doi: https://doi.org/10.1136/heartjnl-2014-307119

602. Keller K, Münzel T, Ostad MA. Sex-specific differences in mortality and the obesity paradox of patients with myocardial infarction ages >70 y. Nutrition. 2018;46(4):124-130. doi: https://doi.org/10.1016/j.nut.2017.09.004

603. Andersen KK, Olsen TS. The Obesity Paradox in Stroke: Lower Mortality and Lower Risk of Readmission for Recurrent Stroke in Obese Stroke Patients. Int J Stroke. 2015;10(1):99-104. doi: https://doi.org/10.1111/ijs.12016

604. Skolarus LE, Sanchez BN, Levine DA, et al. Association of Body Mass Index and Mortality After Acute Ischemic Stroke. Circ Cardiovasc Qual Outcomes. 2014;7(1):64-69. doi: https://doi.org/10.1161/CIRCOUTCOMES.113.000129

605. Zhao L, Du W, Zhao X, et al. Favorable Functional Recovery in Overweight Ischemic Stroke Survivors: Findings from the China National Stroke Registry. J Stroke Cerebrovasc Dis. 2014;23(3):e201-e206. doi: https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.10.002

606. Razinia T, Saver JL, Liebeskind DS, Ali LK, Buck B, Ovbiagele B. Body Mass Index and Hospital Discharge Outcomes After Ischemic Stroke. Arch Neurol. 2007;64(3):388. doi: https://doi.org/10.1001/archneur.64.3.388

607. Burke DT, Al-Adawi S, Bell RB, et al. Effect of Body Mass Index on Stroke Rehabilitation. Arch Phys Med Rehabil. 2014;95(6):1055-1059. doi: https://doi.org/10.1016/j.apmr.2014.01.019

608. Kim Y, Kim CK, Jung S, et al. Obesity-stroke paradox and initial neurological severity. J Neurol Neurosurg Psychiatry. 2015;86(7):743-747. doi: https://doi.org/10.1136/jnnp-2014-308664

609. Ovbiagele B, Bath PM, Cotton D, et al. Obesity and Recurrent Vascular Risk After a Recent Ischemic Stroke. Stroke. 2011;42(12):3397-3402. doi: https://doi.org/10.1161/STROKEAHA.111.624957

610. Andersen KK, Olsen TS. Body Mass Index and Stroke: Overweight and Obesity Less Often Associated with Stroke Recurrence. J Stroke Cerebrovasc Dis. 2013;22(8):e576-e581. doi: https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.06.031

611. Fleischmann E, Teal N, Dudley J, May W, Bower JD, Salahudeen AK. Influence of excess weight on mortality and hospital stay in 1346 hemodialysis patients. Kidney Int. 1999;55(4):1560-1567. doi: https://doi.org/10.1046/j.1523-1755.1999.00389.x

612. Glanton CW, Hypolite IO, Hshieh PB, et al. Factors Associated with Improved Short Term Survival in Obese End Stage Renal Disease Patients. Ann Epidemiol. 2003;13(2):136-143. doi: https://doi.org/10.1016/S1047-2797(02)00251-X

613. Abbott KC, Glanton CW, Trespalacios FC, et al. Body mass index, dialysis modality, and survival: Analysis of the United States Renal Data System Dialysis Morbidity and Mortality Wave II Study. Kidney Int. 2004;65(2):597-605. doi: https://doi.org/10.1111/j.1523-1755.2004.00385.x

614. Stack AG, Murthy BVR, Molony DA. Survival differences between peritoneal dialysis and hemodialysis among “large” ESRD patients in the United States. Kidney Int. 2004;65(6):2398-2408. doi: https://doi.org/10.1111/j.1523-1755.2004.00654.x

615. de Mutsert R, Grootendorst DC, Boeschoten EW, et al. Is Obesity Associated with a Survival Advantage in Patients Starting Peritoneal Dialysis? In: Peritoneal Dialysis - From Basic Concepts to Clinical Excellence. Basel: KARGER; 2009:124-131. doi: https://doi.org/10.1159/000223790

616. Zitt E, Fischer A, Lhotta K, Concin H, Nagel G. Sex- and age-specific variations, temporal trends and metabolic determinants of serum uric acid concentrations in a large population-based Austrian cohort. Sci Rep. 2020;10(1):7578. doi: https://doi.org/10.1038/s41598-020-64587-z

617. Maynard JW, McAdams DeMarco MA, Baer AN, et al. Incident Gout in Women and Association with Obesity in the Atherosclerosis Risk in Communities (ARIC) Study. Am J Med. 2012;125(7):717.e9-717.e17. doi: https://doi.org/10.1016/j.amjmed.2011.11.018

618. Stanaway JD, Afshin A, Gakidou E, et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Stu. Lancet. 2018;392(10159):1923-1994. doi: https://doi.org/10.1016/S0140-6736(18)32225-6

619. Gakidou E, Afshin A, Abajobir AA, et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1345-1422. doi: https://doi.org/10.1016/S0140-6736(17)32366-8

620. Chen J-H, Pan W-H, Hsu C-C, et al. Impact of obesity and hypertriglyceridemia on gout development with or without hyperuricemia: A prospective study. Arthritis Care Res (Hoboken). 2013;65(1):133-140. doi: https://doi.org/10.1002/acr.21824

621. Juraschek SP, Miller ER, Gelber AC. Body mass index, obesity, and prevalent gout in the United States in 1988-1994 and 2007-2010. Arthritis Care Res (Hoboken). 2013;65(1):127-132. doi: https://doi.org/10.1002/acr.21791

622. Xia Y, Wu Q, Wang H, et al. Global, regional and national burden of gout, 1990–2017: a systematic analysis of the Global Burden of Disease Study. Rheumatology. 2020;59(7):1529-1538. doi: https://doi.org/10.1093/rheumatology/kez476

623. Choi Y-J, Shin H-S, Choi HS, et al. Uric acid induces fat accumulation via generation of endoplasmic reticulum stress and SREBP-1c activation in hepatocytes. Lab Investig. 2014;94(10):1114-1125. doi: https://doi.org/10.1038/labinvest.2014.98

624. Vuorinen-Markkola H, Yki-Järvinen H. Hyperuricemia and insulin resistance. J Clin Endocrinol Metab. 1994;78(1):25-29. doi: https://doi.org/10.1210/jcem.78.1.8288709

625. Han T, Lan L, Qu R, et al. Temporal Relationship Between Hyperuricemia and Insulin Resistance and Its Impact on Future Risk of Hypertension. Hypertension. 2017;70(4):703-711. doi: https://doi.org/10.1161/HYPERTENSIONAHA.117.09508

626. Choi HK, Ford ES, Li C, Curhan G. Prevalence of the metabolic syndrome in patients with gout: The Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2007;57(1):109-115. doi: https://doi.org/10.1002/art.22466

627. Hernández-Cuevas CB, Roque LH, Huerta-Sil G, et al. First Acute Gout Attacks Commonly Precede Features of the Metabolic Syndrome. JCR J Clin Rheumatol. 2009;15(2):65-67. doi: https://doi.org/10.1097/RHU.0b013e31819c0dba

628. White J, Sofat R, Hemani G, et al. Plasma urate concentration and risk of coronary heart disease: a Mendelian randomization analysis. Lancet Diabetes Endocrinol. 2016;4(4):327-336. doi: https://doi.org/10.1016/S2213-8587(15)00386-1

629. Rahimi-Sakak F, Maroofi M, Rahmani J, et al. Serum uric acid and risk of cardiovascular mortality: a systematic review and dose-response meta-analysis of cohort studies of over a million participants. BMC Cardiovasc Disord. 2019;19(1):218. doi: https://doi.org/10.1186/s12872-019-1215-z

630. Loeb JN. The influence of temperature on the solubility of monosodium urate. Arthritis Rheum. 1972;15(2):189-192. doi: https://doi.org/10.1002/art.1780150209

631. Roddy E, Doherty M. Gout. Epidemiology of gout. Arthritis Res Ther. 2010;12(6):223. doi: https://doi.org/10.1186/ar3199

632. Bursill D, Taylor WJ, Terkeltaub R, et al. Gout, Hyperuricaemia and Crystal-Associated Disease Network (G-CAN) consensus statement regarding labels and definitions of disease states of gout. Ann Rheum Dis. 2019;78(11):1592-1600. doi: https://doi.org/10.1136/annrheumdis-2019-215933

633. Елисеев МС. Подагра. В кн.: Насонов ЕЛ, редактор. Ревматология. Российские клинические рекомендации. Москва: ГЭОТАРМедиа; 2017. С. 253-64.

634. Neogi T, Jansen TLTA, Dalbeth N, et al. 2015 Gout classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis. 2015;74(10):1789-1798. doi: https://doi.org/10.1136/annrheumdis-2015-208237

635. Richette P, Doherty M, Pascual E, et al. 2018 updated European League Against Rheumatism evidence-based recommendations for the diagnosis of gout. Ann Rheum Dis. 2020;79(1):31-38. doi: https://doi.org/10.1136/annrheumdis-2019-215315

636. Елисеев М.С., Владимиров С.А. Распространенность и клинические особенности подагры и болезни депонирования пирофосфата кальция у пациентов с острым артритом // Научнопрактическая ревматология. — 2015. — №4. — С. 375-378.

637. Dalbeth N, Schumacher HR, Fransen J, et al. Survey Definitions of Gout for Epidemiologic Studies: Comparison With Crystal Identification as the Gold Standard. Arthritis Care Res (Hoboken). 2016;68(12):1894-1898. doi: https://doi.org/10.1002/acr.22896

638. Christiansen SN, Østergaard M, Slot O, et al. Ultrasound for the diagnosis of gout—the value of gout lesions as defined by the Outcome Measures in Rheumatology ultrasound group. Rheumatology. 2021;60(1):239-249. doi: https://doi.org/10.1093/rheumatology/keaa366

639. Taylor WJ, Fransen J, Dalbeth N, et al. Performance of classification criteria for gout in early and established disease. Ann Rheum Dis. 2016;75(1):178-182. doi: https://doi.org/10.1136/annrheumdis-2014-206364

640. Gamala M, Jacobs JWG, Linn-Rasker SF, et al. The performance of dual-energy CT in the classification criteria of gout: a prospective study in subjects with unclassified arthritis. Rheumatology. 2020;59(4):845-851. doi: https://doi.org/10.1093/rheumatology/kez391

641. Filippou G, Pascart T, Iagnocco A. Utility of Ultrasound and Dual Energy CT in Crystal Disease Diagnosis and Management. Curr Rheumatol Rep. 2020;22(5):15. doi: https://doi.org/10.1007/s11926-020-0890-1

642. Дедов И.И., Мельниченко Г.А., Шестакова М.В., и др. Лечение морбидного ожирения у взрослых // Ожирение и метаболизм. — 2018. — Т.15. — №1. — С. 53-70. doi: https://doi.org/10.14341/omet2018153-70

643. Zhu Y, Zhang Y, Choi HK. The serum urate-lowering impact of weight loss among men with a high cardiovascular risk profile: the Multiple Risk Factor Intervention Trial. Rheumatology. 2010;49(12):2391-2399. doi: https://doi.org/10.1093/rheumatology/keq256

644. Барскова В.Г., Елисеев М.С., Кудаева Ф.М., и др. Влияние метформина на течение подагры и инсулинорезистентность // Клиническая медицина. — 2009. — Т.87. — №7. — С. 41-46.

645. Dalbeth N, Chen P, White M, et al. Impact of bariatric surgery on serum urate targets in people with morbid obesity and diabetes: a prospective longitudinal study. Ann Rheum Dis. 2014;73(5):797-802. doi: https://doi.org/10.1136/annrheumdis-2013-203970

646. Dessein PH. Beneficial effects of weight loss associated with moderate calorie/carbohydrate restriction, and increased proportional intake of protein and unsaturated fat on serum urate and lipoprotein levels in gout: a pilot study. Ann Rheum Dis. 2000;59(7):539-543. doi: https://doi.org/10.1136/ard.59.7.539

647. Zhou J, Wang Y, Lian F, et al. Physical exercises and weight loss in obese patients help to improve uric acid. Oncotarget. 2017;8(55):94893-94899. doi: https://doi.org/10.18632/oncotarget.22046

648. Nielsen SM, Bartels EM, Henriksen M, et al. Weight loss for overweight and obese individuals with gout: a systematic review of longitudinal studies. Ann Rheum Dis. 2017;76(11):1870-1882. doi: https://doi.org/10.1136/annrheumdis-2017-211472

649. Santos FL, Esteves SS, da Costa Pereira A, Yancy Jr WS, Nunes JPL. Systematic review and meta-analysis of clinical trials of the effects of low carbohydrate diets on cardiovascular risk factors. Obes Rev. 2012;13(11):1048-1066. doi: https://doi.org/10.1111/j.1467-789X.2012.01021.x

650. Khanna D, Fitzgerald JD, Khanna PP, et al. 2012 American College of Rheumatology guidelines for management of gout. Part 1: Systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res (Hoboken). 2012;64(10):1431-1446. doi: https://doi.org/10.1002/acr.21772

651. Nguyen UDT, Zhang Y, Louie‐Gao Q, et al. Obesity Paradox in Recurrent Attacks of Gout in Observational Studies: Clarification and Remedy. Arthritis Care Res (Hoboken). 2017;69(4):561-566. doi: https://doi.org/10.1002/acr.22954

652. Bhole V, de Vera M, Rahman MM, et al. Epidemiology of gout in women: Fifty-two-year followup of a prospective cohort. Arthritis Rheum. 2010;62(4):1069-1076. doi: https://doi.org/10.1002/art.27338

653. Gaffo AL, Roseman JM, Jacobs DR, et al. Serum urate and its relationship with alcoholic beverage intake in men and women: findings from the Coronary Artery Risk Development in Young Adults (CARDIA) cohort. Ann Rheum Dis. 2010;69(11):1965-1970. doi: https://doi.org/10.1136/ard.2010.129429

654. Choi HK, Atkinson K, Karlson EW, et al. Alcohol intake and risk of incident gout in men: a prospective study. Lancet. 2004;363(9417):1277-1281. doi: https://doi.org/10.1016/S0140-6736(04)16000-5

655. Tumwesigye NM, Mutungi G, Bahendeka S, et al. Alcohol consumption, hypertension and obesity: Relationship patterns along different age groups in Uganda. Prev Med Reports. 2020;19:101141. doi: https://doi.org/10.1016/j.pmedr.2020.101141

656. Tsilas CS, de Souza RJ, Mejia SB, et al. Relation of total sugars, fructose and sucrose with incident type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies. Can Med Assoc J. 2017;189(20):E711-E720. doi: https://doi.org/10.1503/cmaj.160706

657. Stirpe F, Della Corte E, Bonetti E, et al. Fructose-induced hyperuricæmia. Lancet. 1970;296(7686):1310-1311. doi: https://doi.org/10.1016/S0140-6736(70)92269-5

658. Choi HK, Curhan G. Soft drinks, fructose consumption, and the risk of gout in men: prospective cohort study. BMJ. 2008;336(7639):309-312. doi: https://doi.org/10.1136/bmj.39449.819271.BE

659. Choi HK, Willett W, Curhan G. Fructose-Rich Beverages and Risk of Gout in Women. JAMA. 2010;304(20):2270. doi: https://doi.org/10.1001/jama.2010.1638

660. Choi HK, Liu S, Curhan G. Intake of purine-rich foods, protein, and dairy products and relationship to serum levels of uric acid: The Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2005;52(1):283-289. doi: https://doi.org/10.1002/art.20761

661. Zhang Y, Chen C, Choi H, et al. Purine-rich foods intake and recurrent gout attacks. Ann Rheum Dis. 2012;71(9):1448-1453. doi: https://doi.org/10.1136/annrheumdis-2011-201215

662. Елисеев М.С., Чикина М.Н., Кобелькова И.В., и др. Определение группы риска по белковому и пуриновому дисбалансу у высококвалифицированных спортсменов в различных видах спорта // Лечебная физкультура и спортивная медицина. — 2019. — Т.152. — №2. — С. 6-13.

663. Kullich W, Ulreich A, Klein G. Changes in uric acid and blood lipids in patients with asymptomatic hyperuricemia treated with diet therapy in a rehabilitation procedure. Rehabilitation (Stuttg). 1989;28(3):134-137.

664. Ellmann H, Bayat S, Araujo E, et al. Effects of Conventional Uric Acid–Lowering Therapy on Monosodium Urate Crystal Deposits. Arthritis Rheumatol. 2020;72(1):150-156. doi: https://doi.org/10.1002/art.41063

665. Chen J-H, Wen CP, Wu SB, et al. Attenuating the mortality risk of high serum uric acid: the role of physical activity underused. Ann Rheum Dis. 2015;74(11):2034-2042. doi: https://doi.org/10.1136/annrheumdis-2014-205312

666. Park DY, Kim YS, Ryu SH, Jin YS. The association between sedentary behavior, physical activity and hyperuricemia. Vasc Health Risk Manag. 2019;15:291-299. doi: https://doi.org/10.2147/VHRM.S200278

667. Andersson C, Weeke P, Brendorp B, et al. Differential changes in serum uric acid concentrations in sibutramine promoted weight loss in diabetes: results from four weeks of the lead-in period of the SCOUT trial. Nutr Metab (Lond). 2009;6(1):42. doi: https://doi.org/10.1186/1743-7075-6-42

668. Gokcel A, Gumurdulu Y, Karakose H, et al. Evaluation of the safety and efficacy of sibutramine, orlistat and metformin in the treatment of obesity. Diabetes, Obes Metab. 2002;4(1):49-55. doi: https://doi.org/10.1046/j.1463-1326.2002.00181.x

669. Tonneijck L, Muskiet MHA, Smits MM, et al. Effect of immediate and prolonged GLP‐1 receptor agonist administration on uric acid and kidney clearance: Post‐hoc analyses of four clinical trials. Diabetes, Obes Metab. 2018;20(5):1235-1245. doi: https://doi.org/10.1111/dom.13223

670. Vazirpanah N, Ottria A, van der Linden M, et al. mTOR inhibition by metformin impacts monosodium urate crystal–induced inflammation and cell death in gout: a prelude to a new add-on therapy? Ann Rheum Dis. 2019;78(5):663-671. doi: https://doi.org/10.1136/annrheumdis-2018-214656

671. Yu J, Lu H, Zhou J, et al. Oral prednisolone versus nonsteroidal anti-inflammatory drugs in the treatment of acute gout: a meta-analysis of randomized controlled trials. Inflammopharmacology. 2018;26(3):717-723. doi: https://doi.org/10.1007/s10787-018-0442-8

672. FitzGerald JD, Dalbeth N, Mikuls T, et al. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Care Res (Hoboken). 2020;72(6):744-760. doi: https://doi.org/10.1002/acr.24180

673. Oray M, Abu Samra K, Ebrahimiadib N, et al. Long-term side effects of glucocorticoids. Expert Opin Drug Saf. 2016;15(4):457-465. doi: https://doi.org/10.1517/14740338.2016.1140743

674. Федорова А.А., Барскова В.Г., Якунина И.А., Насонова В.А. Кратковременное применение глюкокортикоидов у больных с затяжным и хроническим подагрическим артритом, (часть II — сравнение эффективности различных лекарственных форм). Научно-практическая ревматология. 2008;46(5):72-75. doi: https://doi.org/10.14412/1995-4484-2008-418

675. Федорова A.A., Барскова В.Г., Якунина И.А., Насонова В.А. Кратковременное применение глюкокортикоидов у больных затяжным и хроническим подагрическим артритом. Часть III — частота развития нежелательных реакций. Научно-практическая ревматология. 2009;62(2):38-42. doi: https://doi.org/10.14412/1995-4484-2009-457

676. Tardif J-C, Kouz S, Waters DD, et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N Engl J Med. 2019;381(26):2497-2505. doi: https://doi.org/10.1056/NEJMoa1912388

677. Solomon DH, Liu C-C, Kuo I-H, et al. Effects of colchicine on risk of cardiovascular events and mortality among patients with gout: a cohort study using electronic medical records linked with Medicare claims. Ann Rheum Dis. 2016;75(9):1674-1679. doi: https://doi.org/10.1136/annrheumdis-2015-207984

678. Friedman JE, Dallal RM, Lord JL. Gouty attacks occur frequently in postoperative gastric bypass patients. Surg Obes Relat Dis. 2008;4(1):11-13. doi: https://doi.org/10.1016/j.soard.2007.09.012

679. Romero-Talamás H, Daigle CR, Aminian A, et al. The effect of bariatric surgery on gout: a comparative study. Surg Obes Relat Dis. 2014;10(6):1161-1165. doi: https://doi.org/10.1016/j.soard.2014.02.025

680. Yeo C, Kaushal S, Lim B, et al. Impact of bariatric surgery on serum uric acid levels and the incidence of gout—A meta‐analysis. Obes Rev. 2019;20(12):1759-1770. doi: https://doi.org/10.1111/obr.12940.

681. Государственный реестр лекарственных средств. [Электронный ресурс]. Доступно по ссылке: https://grls.rosminzdrav.ru/grls.aspx. Ссылка действительна на 10.08.2020 г.

682. Malm‐Erjefalt M, Ekblom M, Brondsted L, et al. A randomised, double‐blind, cross‐over trial investigating the effects of liraglutide on the absorption pharmacokinetics of concomitantly administered oral drugs in healthy subjects. Diabetes. 2008;56:434.

683. Jacobsen LV, Brondsted L, Vouis J, Zdaravkovic M. A randomized, double‐blind, cross‐over trial investigating the effect of liraglutide on the absorption of an oral contraceptive drug. Diabetes. 2008;57:2047‐PO.

684. Kapitza C, Zdravkovic M, Hindsberger C, Flint A. The effect of the once-daily human glucagon-like peptide 1 analog liraglutide on the pharmacokinetics of acetaminophen. Adv Ther. 2011;28(8):650-660. doi: https://doi.org/10.1007/s12325-011-0044-y

685. Malm-Erjefält M, Ekblom M, Vouis J, et al. Effect on the Gastrointestinal Absorption of Drugs from Different Classes in the Biopharmaceutics Classification System, When Treating with Liraglutide. Mol Pharm. 2015;12(11):4166-4173. doi: https://doi.org/10.1021/acs.molpharmaceut.5b00278

686. Novo Nordisk A/S. Victoza: EU summary of product characteristics. 2014. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/001026/WC500050017.pdf.

687. Colman E, Fossler M. Reduction in Blood Cyclosporine Concentrations by Orlistat. N Engl J Med. 2000;342(15):1141-1142. doi: https://doi.org/10.1056/NEJM200004133421518

688. Nägele H, Petersen B, Bonacker U, Rödiger W. Effect of orlistat on blood cyclosporin concentration in an obese heart transplant patient. Eur J Clin Pharmacol. 1999;55(9):667-669. doi: https://doi.org/10.1007/s002280050690

689. Barbaro D, Orsini P, Pallini S, et al. Obesity in Transplant Patients: Case Report Showing Interference of Orlistat with Absorption of Cyclosporine and Review of Literature. Endocr Pract. 2002;8(2):124-126. doi: https://doi.org/10.4158/EP.8.2.124

690. Zhi J, Moore R, Kanitra L, Mulligan TE. Pharmacokinetic Evaluation of the Possible Interaction between Selected Concomitant Medications and Orlistat at Steady State in Healthy Subjects. J Clin Pharmacol. 2002;42(9):1011-1019. doi: https://doi.org/10.1177/0091270002042009008

691. Zhi J, Melia AT, Guerciolini R, et al. The Effect of Orlistat on the Pharmacokinetics and Pharmacodynamics of Warfarin in Healthy Volunteers. J Clin Pharmacol. 1996;36(7):659-666. doi: https://doi.org/10.1002/j.1552-4604.1996.tb04232.x

692. MacWalter RS, Fraser HW, Armstrong KM. Orlistat Enhances Warfarin Effect. Ann Pharmacother. 2003;37(4):510-512. doi: https://doi.org/10.1345/aph.1C122

693. Zhi J, Moore R, Kanitra L, Mulligan TE. Effects of Orlistat, a Lipase Inhibitor, on the Pharmacokinetics of Three Highly Lipophilic Drugs (Amiodarone, Fluoxetine, and Simvastatin) in Healthy Volunteers. J Clin Pharmacol. 2003;43(4):428-435. doi: https://doi.org/10.1177/0091270003252236

694. Holmbäck U, Forslund A, Grudén S, et al. Effects of a novel combination of orlistat and acarbose on tolerability, appetite, and glucose metabolism in persons with obesity. Obes Sci Pract. 2020;6(3):313-323. doi: https://doi.org/10.1002/osp4.405

695. Bigham S, McGuigan C, MacDonald BK. Reduced absorption of lipophilic anti-epileptic medications when used concomitantly with the anti-obesity drug orlistat [letter]. Epilepsia. 2006;47(12):2207-2207. doi: https://doi.org/10.1111/j.1528-1167.2006.00945_1.x

696. Peleg R. Caution when using oral contraceptive pills with Orlistat [letter]. Isr Med Assoc J. 2000;2(9):712

697. Hartmann D, Güzelhan C, Zuiderwijk PBM, Odink J. Lack of interaction between orlistat and oral contraceptives. Eur J Clin Pharmacol. 1996;50(5):421-424. doi: https://doi.org/10.1007/s002280050134

698. Madhava K, Hartley A. Hypothyroidism in Thyroid Carcinoma Follow-up: Orlistat May Inhibit the Absorption of Thyroxine [letter]. Clin Oncol. 2005;17(6):492. doi: https://doi.org/10.1016/j.clon.2005.05.001

699. Melia AT, Koss-Twardy SG, Zhi J. The Effect of Orlistat, an Inhibitor of Dietary Fat Absorption, on the Absorption of Vitamins A and E in Healthy Volunteers. J Clin Pharmacol. 1996;36(7):647-653. doi: https://doi.org/10.1002/j.1552-4604.1996.tb04230.x

700. Zhi J, Melia AT, Koss-Twardy SG, et al. The Effect of Orlistat, an Inhibitor of Dietary Fat Absorption, on the Pharmacokinetics of β-Carotene in Healthy Volunteers. J Clin Pharmacol. 1996;36(2):152-159. doi: https://doi.org/10.1002/j.1552-4604.1996.tb04180.x

701. Davidson MH, Hauptman J, DiGirolamo M, et al. Weight Control and Risk Factor Reduction in Obese Subjects Treated for 2 Years With Orlistat. JAMA. 1999;281(3):235. doi: https://doi.org/10.1001/jama.281.3.235

702. Sjöström L, Rissanen A, Andersen T, et al. Randomised placebocontrolled trial of orlistat for weight loss and prevention

703. Kushner RF. Clinical Assessment and Management of Adult Obesity. Circulation. 2012;126(24):2870-2877. doi: https://doi.org/10.1161/CIRCULATIONAHA.111.075424

704. Вахмистров А.В. Нарушения пищевого поведения при церебральном ожирении: Дис. … канд. мед. наук. — М.; 2001. [Vakhmistrov AV. Narusheniya pishchevogo povedeniya pri tserebral’nom ozhirenii. [dissertation] Moscow; 2001. (In Russ.)].

705. Дедов И.И. Ожирение. — М.: МИА; 2004. 456 с. [Dedov II. Ozhirenie. Moscow: MIA; 2004. 456 p. (In Russ.)].

706. Mason TB, Lewis RJ. Profiles of Binge Eating: The Interaction of Depressive Symptoms, Eating Styles, and Body Mass Index. Eat Disord. 2014;22(5):450-460. doi: https://doi.org/10.1080/10640266.2014.931766

707. Pisetsky EM, Thornton LM, Lichtenstein P, et al. Suicide attempts in women with eating disorders. J Abnorm Psychol. 2013;122(4):1042-1056. doi: https://doi.org/10.1037/a0034902

708. Stunkard AJ, Costello Allison K. Two forms of disordered eating in obesity: binge eating and night eating. Int J Obes. 2003;27(1):1-12. doi: https://doi.org/10.1038/sj.ijo.0802186

709. Giannini J. The Eating Disorders ed. Slaby AE. editor. SpringerVerlag; New York Inc; 1993.

710. Малкина-Пых И.Г. Терапия пищевого поведения. Психология. — М.: Эксмо; 2007. [Malkina-Pykh IG. Terapiya pishchevogo povedeniya. Psikhologiya. Moscow: Eksmo; 2007. (In Russ.)].

711. Смулевич А.Б. Психические расстройства в клинической практике. — М.: 2011.

712. Дедов И.И., Мельниченко Г.А., Шестакова М.В., и др. Национальные клинические рекомендации по лечению морбидного ожирения у взрослых. 3-й пересмотр (Лечение морбидного ожирения у взрослых) // Ожирение и метаболизм. — 2018. — Т. 15. — №1 — С. 53-70. doi: https://doi.org/10.14341/OMET2018153-70

713. Lowe MR, Caputo GC. Binge eating in obesity: Toward the specification of predictors. Int J Eat Disord. 1991;10(1):49-55. doi: https://doi.org/10.1002/1098-108X(199101)10:1<49::AIDEAT2260100106>3.0.CO;2-X

714. Walsh BT. Eating Disorders: Progress and Problems. Science (80-). 1998;280(5368):1387-1390. doi: https://doi.org/10.1126/science.280.5368.1387

715. Cengiz Y, Karamustafalioglu O, Toker S. Prevalence of night eating syndrome and comorbidity with other psychiatric disorders in Psychiatric Outpatient Population. Yeni Symposium Journal. 2011;49(2):83-88.

716. Miján A. Eating disorders in obesity. Revista Espanola de Obesidad. 2006;4(6):317-327.

717. Brownley KA, Peat CM, La Via M, Bulik CM. Pharmacological Approaches to the Management of Binge Eating Disorder. Drugs. 2015;75(1):9-32. doi: https://doi.org/10.1007/s40265-014-0327-0

718. Schag K, Schönleber J, Teufel M, et al. Food-related impulsivity in obesity and Binge Eating Disorder — a systematic review. Obes Rev. 2013;14(6):477-495. doi: https://doi.org/10.1111/obr.12017

719. Wilfley DE, Friedman MA, Dounchis JZ, et al. Comorbid psychopathology in binge eating disorder: Relation to eating disorder severity at baseline and following treatment. J Consult Clin Psychol. 2000;68(4):641-649. doi: https://doi.org/10.1037/0022-006X.68.4.641

720. Cleator J, Abbott J, Judd P, Sutton C, Wilding JPH. Night eating syndrome: implications for severe obesity. Nutr Diabetes. 2012;2(9):e44-e44. doi: https://doi.org/10.1038/nutd.2012.16

721. Gerlach G, Herpertz S, Loeber S. Personality traits and obesity: a systematic review. Obes Rev. 2015;16(1):32-63. doi: https://doi.org/10.1111/obr.12235

722. Kessler RM, Hutson PH, Herman BK, Potenza MN. The neurobiological basis of binge-eating disorder. Neurosci Biobehav Rev. 2016;63(1):223-238. doi: https://doi.org/10.1016/j.neubiorev.2016.01.013

723. Вознесенская Т.Г., Вахмистров А.В. Клинико-психологический анализ нарушений пищевого поведения при ожирении // Журн. неврол. и психиатр. — 2001. — №12. — С. 19-24.

724. Welch E, Jangmo A, Thornton LM, et al. Treatment-seeking patients with binge-eating disorder in the Swedish national registers: clinical course and psychiatric comorbidity. BMC Psychiatry. 2016;16(1):163. doi: https://doi.org/10.1186/s12888-016-0840-7

725. The Eating Disorders. Ed. by Giannini J, Andrew E. SpringerVerlag New York Inc.; 1993. 283 p.

726. Гетманчук Е.И. Клинико-психопатологическая и медикопсихологическая характеристика больных с психогенной гиперфагией // Архів психіатрії. — 2012. — Т. 3. — №70. — С. 19-25.

727. Palavras M, Hay P, Filho CAet al. The Efficacy of Psychological Therapies in Reducing Weight and Binge Eating in People with Bulimia Nervosa and Binge Eating Disorder Who Are Overweight or Obese — A Critical Synthesis and Meta-Analyses. Nutrients. 2017;9(3):299. doi: https://doi.org/10.3390/nu9030299

728. Melendez G, Serralde-Zúñiga AE, Gonzalez Garay AG, et al. Fluoxetine for adult overweight or obese people. Cochrane Database Syst Rev. May 2015. doi: https://doi.org/10.1002/14651858.CD011688

729. Ghaderi A, Odeberg J, Gustafsson S, et al. Psychological, pharmacological, and combined treatments for binge eating disorder: a systematic review and meta-analysis. PeerJ. 2018;6:e5113. doi: https://doi.org/10.7717/peerj.5113

730. Alfonsson S, Parling T, Ghaderi A. Group Behavioral Activation for Patients With Severe Obesity and Binge Eating Disorder. Behav Modif. 2015;39(2):270-294. doi: https://doi.org/10.1177/0145445514553093

731. Brownley KA, Berkman ND, Peat CM, et al. Binge-Eating Disorder in Adults. Ann Intern Med. 2016;165(6):409. doi: https://doi.org/10.7326/M15-2455

732. Peat CM, Berkman ND, Lohr KN, et al. Comparative Effectiveness of Treatments for Binge-Eating Disorder: Systematic Review and Network Meta-Analysis. Eur Eat Disord Rev. 2017;25(5):317-328. doi: https://doi.org/10.1002/erv.2517

733. Becker DF, Grilo CM. Comorbidity of mood and substance use disorders in patients with binge-eating disorder: Associations with personality disorder and eating disorder pathology. J Psychosom Res. 2015;79(2):159–64. doi: https://doi.org/10.1016/j.jpsychores.2015.01.016.

734. Fontenelle LF, Vltor Mendlowicz M, de Menezes GB, et al. Psychiatric comorbidity in a Brazilian sample of patients with binge-eating disorder. Psychiatry Res. 2003;119(1-2):189-94. doi: https://doi.org/10.1016/S0165-1781(03)00127-6.

735. Grilo C, White M, Barnes R, Masheb R. Psychiatric disorder co-morbidity and correlates in an ethnically diverse sample of obese patients with binge eating disorder in primary care settings. Comp Psychiatry. 2013;54:209-16. doi: https://doi.org/10.1016/j.comppsych.2012.07.012.

736. Grucza RA, Przybeck TR, Cloninger CR. Prevalence and correlates of binge eating disorder in a community sample. Comp Psychiatry. 2007;48(2):124–31. doi: https://doi.org/10.1016/j.comppsych.2006.08.002.

737. Hudson JI, Hiripi E, Pope HG, Kessler RC. The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication. Biol Psychiatry. 2007;61(3):348-58. doi: https://doi.org/10.1016/j.biopsych.2006.03.040.

738. Javaras KN, Pope HG, Lalonde JK, et al. Co-occurrence of binge eating disorder with psychiatric and medical disorders. J Clin Psychiatry. 2008;69(2):266–73. doi: https://doi.org/10.4088/JCP.v69n0213.Y.

739. Bernstein BE, Bienenfeld D. Binge Eating Disorder (BED) Treatment & Management. Mar 30, 2020. Available from: https://emedicine.medscape.com/article/2221362-treatment.

740. Arnold LM, McElroy SL, Hudson JI, et al. A placebocontrolled, randomized trial of fluoxetine in the treatment of binge-eating disorder. J Clin Psychiatry. 2002;63:1028-33. doi: https://doi.org/10.4088/JCP.v63n1113

741. Grilo CM, Masheb RM, Wilson GT. Efficacy of cognitive behavioral therapy and fluoxetine for the treatment of binge eating disorder: a randomized double-blind placebo-controlled comparison. Biol Psychiatry. 2005;57:301-9. doi: https://doi.org/10.1016/j.biopsych.2004.11.002

742. Hudson JI, McElroy SL, Raymond NC, et al. Fluvoxamine in the Treatment of Binge-Eating Disorder: A Multicenter PlaceboControlled, Double-Blind Trial. Am J Psychiatry. 1998;155(12):1756-1762. doi: https://doi.org/10.1176/ajp.155.12.1756

743. Guerdjikova AI, McElroy SL, Kotwal R, et al. High-dose escitalopram in the treatment of binge-eating disorder with obesity: a placebo-controlled monotherapy trial. Hum Psychopharmacol. 2008;23:1-11. doi: https://doi.org/10.1002/hup.899

744. McElroy SL, Casuto LS, Nelson EB, et al. Placebocontrolled trial of sertraline in the treatment of binge eating disorder. Am J Psychiatry. 2000;157:1004-6. doi: https://doi.org/10.1176/appi.ajp.157.6.1004

745. Guerdjikova AI, McElroy SL, Winstanley EL, et al. Duloxetine in the treatment of binge eating disorder with depressive disorders: A placebo-controlled trial. Int J Eat Disord. 2012;45(2):281-289. doi: https://doi.org/10.1002/eat.20946

746. Laederach-Hofmann K, Graf C, Horber F, et al. Imipramine and diet counseling with psychological support in the treatment of obese binge eaters: A randomized, placebo-controlled double-blind study. Int J Eat Disord. 1999;26(3):231-244. doi: https://doi.org/10.1002/(SICI)1098-108X(199911)26:3<231::AID-EAT1>3.0.CO;2-6


Дополнительные файлы

1. Рисунок 1. Алгоритм ведения пациента с экзогенно-конституциональным ожирением
Тема
Тип Исследовательские инструменты
Посмотреть (476KB)    
Метаданные
2. Рисунок 2. Алгоритм обследования пациента с подозрением на неалкогольную жировую болезнь печени с целью выявления стадии фиброза печени.
Тема
Тип Исследовательские инструменты
Посмотреть (342KB)    
Метаданные
3. Рисунок 3. Алгоритм обследования и лечения пациентов с неалкогольной жировой болезнью печени для врачей общей практики
Тема
Тип Исследовательские инструменты
Посмотреть (374KB)    
Метаданные

Для цитирования:


Дедов И.И., Шестакова М.В., Мельниченко Г.А., Мазурина Н.В., Андреева Е.Н., Бондаренко И.З., Гусова З.Р., Дзгоева Ф.Х., Елисеев М.С., Ершова Е.В., Журавлева М.В., Захарчук Т.А., Исаков В.А., Клепикова М.В., Комшилова К.А., Крысанова В.С., Недогода С.В., Новикова А.М., Остроумова О.Д., Переверзев А.П., Роживанов Р.В., Романцова Т.И., Руяткина Л.А., Саласюк А.С., Сасунова А.Н., Сметанина С.А., Стародубова А.В., Суплотова Л.А., Ткачева О.Н., Трошина Е.А., Хамошина М.Б., Чечельницкая С.М., Шестакова Е.А., Шереметьева Е.В. МЕЖДИСЦИПЛИНАРНЫЕ КЛИНИЧЕСКИЕ РЕКОМЕНДАЦИИ «ЛЕЧЕНИЕ ОЖИРЕНИЯ И КОМОРБИДНЫХ ЗАБОЛЕВАНИЙ». Ожирение и метаболизм. 2021;18(1):5-99. https://doi.org/10.14341/omet12714

For citation:


Dedov I.I., Shestakova M.V., Melnichenko G.A., Mazurina N.V., Andreeva E.N., Bondarenko I.Z., Gusova Z.R., Dzgoeva F.K., Eliseev M.S., Ershova E.V., Zhuravleva M.V., Zakharchuk T.A., Isakov V.A., Klepikova M.V., Komshilova K.A., Krysanova V.S., Nedogoda S.V., Novikova A.M., Ostroumova O.D., Pereverzev A.P., Rozhivanov R.V., Romantsova T.I., Ruyatkina L.A., Salasyuk A.S., Sasunova A.N., Smetanina S.A., Starodubova A.V., Suplotova L.A., Tkacheva O.N., Troshina E.A., Khamoshina M.V., Chechelnitskaya S.M., Shestakova E.A., Sheremet’eva E.V. INTERDISCIPLINARY CLINICAL PRACTICE GUIDELINES "MANAGEMENT OF OBESITY AND ITS COMORBIDITIES". Obesity and metabolism. 2021;18(1):5-99. (In Russ.) https://doi.org/10.14341/omet12714

Просмотров: 239


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)