Association of ACE and PPARGC1A gene polymorphisms with obesity phenotypes in children in the Russian Federation
https://doi.org/10.14341/omet13167
Abstract
BACKGROUND: Certain genes are involved in the regulation of nutrient and energy metabolism. The PPARGC1A and ACE genes, the products of which provide cellular energy metabolism, are actively studied not only in the development of relationships with the physical characteristics of individuals (sports results), but also in relation to pathological changes in the body, as a result of the appearance of metabolic products with altered physicochemical properties and parameters of functional activity, leading to various diseases (obesity, type 2 diabetes, insulin resistance, metabolic syndrome).
AIM: to conduct an associative search for genetic variants of the ACE (I/D) and PPARGC1A (G/A) genes with clinical phenotypes of obesity in children.
MATERIALS AND METHODS: The study included 177 children with obesity and 135 healthy children aged 5 to 18 years. The following were studied: nutritional status, lipid and carbohydrate metabolism parameters to conduct an associative search for genetic variants of the ACE (I/D) and PPARGC1A (G/A) genes with clinical phenotypes of obesity (OB). Testing of polymorphic variants of the ACE (I/D), PPARGC1A (PGC-1) genes was performed by PCR and RFLP analysis.
RESULTS: In the sample of healthy children, the I/D and I/I genotype of the ACE gene and the A/A and G/A genotypes of the PPARGC1A gene are more common. In patients with obesity, the I/D genotype and the D allele of the ACE gene, and the G/A genotype of the PPARGC1A gene are more common. The G/G genotype and the G allele of the PPARGC1A gene in obesity were associated with metabolic syndrome and hypertriglyceridemia
CONCLUSION: The I/D genotype of the ACE gene was more common in obese patients, but no associations of the genotype with metabolic risks were found. The G/G genotype of the PPARGC1A gene was more common in obese patients and was associated with the risk of developing metabolic disorders and hypertriglyceridemia.
About the Authors
T. Y. MaksimychevaRussian Federation
Tatyana Y. Maksimycheva, PhD
Scopus Author ID: 57194199574
РИНЦ ID: 901195
1 Moskvorechye street, 115478 Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
N. V. Balinova
Russian Federation
Natalia V. Balinova, Ph.D. in Biology
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
Yu. L. Mel’yanovskaya
Russian Federation
Yuliya L. Mel’yanovskaya, PhD
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
A. V. Buhonin
Russian Federation
Artem V. Buhonin
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
M. V. Tarasov
Russian Federation
Maxim V. Tarasov
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
A. I. Tlif
Russian Federation
Asiet I. Tlif
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
A. V. Basova
Russian Federation
Anna V. Basova
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
E. V. Loshkova
Russian Federation
Elena V. Loshkova, MD, Ph.D
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
E. I. Kondratyeva
Russian Federation
Elena I. Kondratyeva MD, PhD, Professor
Scopus Author ID: 36737150600
РИНЦ ID: 97304 WOS
Research ID: A-6128-2014
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
References
1. Maciejewska-Skrendo A, Massidda M, Tocco F, at all. The Influence of the Differentiation of Genes Encoding Peroxisome Proliferator-Activated Receptors and Their Coactivators on Nutrient and Energy Metabolism. Nutrients. 2022;14(24):5378. doi: https://doi.org/10.3390/nu14245378
2. Bhatta P, Bermano G, Williams HC, Knott RM. Metaanalysis demonstrates Gly482Ser variant of PPARGC1A is associated with components of metabolic syndrome within Asian populations. Genomics. 2020;112(2):1795-1803. doi: https://doi.org/10.1016/j.ygeno.2019.10.011
3. Wang Y, Zhang L, Wu L, Cao R, Peng X, Fu L. An Association Between FNDC5, PGC-1α Genetic Variants and Obesity in Chinese Children: A Case-Control Study Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2023; 16:47-59. doi: https://doi.org/10.2147/dmso.s391219.
4. Barroso I, Luan J, Sandhu MS, Franks PW, Crowley V, et al. Meta-analysis of the Gly482Ser variant in PPARGC1A in type 2 diabetes and related phenotypes. Diabetologia. 2006;49(3):501-5. doi: https://doi.org/10.1007/s00125-005-0130-2
5. Coelho ARP, Silveira LC, Santos KF, Santos RDS, Reis AADS. No Association of Angiotensin-Converting Enzyme Insertion/ Deletion (ACE I/D) Gene Polymorphism in the Susceptibility to Diabetic Retinopathy in Type 2 Diabetes Mellitus Patients: An Updated Meta-Analysis. J Pers Med. 2023;13(9):1308. doi: https://doi.org/10.3390/jpm13091308
6. Papysheva OV, Nurbekov MK, Mayatskaya TA, Kotaish GA, Kozhevnikova EN, Shchipkova ES, Morozov SG. The effect of polymorphism of genes PGC1a, ACE and DRD2 on the development and course of gestational diabetes mellitus. // Issues of gynecology, obstetrics and perinatology. 2020;19(3):63–71. (In Russ.). doi: https://doi.org/10.20953/1726-1678-2020-3-63-71
7. Zambrano AK, Cadena-Ullauri S, Guevara-Ramírez P, Ruiz-Pozo VA, Tamayo-Trujillo R, Paz-Cruz E, Ibarra-Rodríguez AA, Doménech N. Genetic diet interactions of ACE: the increased hypertension predisposition in the Latin American population. Front Nutr. 2023;26;10:1241017. doi: https://doi.org/10.3389/fnut.2023.1241017
8. World Health Organization. [Электронный ресурс] http://www.who.int/mediacentre/factsheets/fs311/ru/
9. Vasyukova OV. Insulin, leptin, lipids and peripheral growth factors in childhood obesity: abstract of the dissertation of the Candidate of Medical Sciences, Moscow, 2006, 24 p. (In Russ.)
10. Dr Joao Breda. Latest WHO data on child obesity shows that southern European countries have the highest rate of childhood obesity. 2018
11. Mendis Shanthi, Puska Pekka, Norrving Bo; World Health Organization, World Heart Federation. et al. Global atlas on cardiovascular disease prevention and control / edited by: Shanthi Mendis ... [et al.]. World Health Organization Publ., 2013
12. Clinical guidelines «Obesity in children. 2021» ID:229 [Electronic resource] (In Russ.)
13. Zakharova IN, Malyavskaya SI, Tvorogova TM, Vasilieva SV, Dmitrieva YA, Pshenichnikova II. Metabolic syndrome in children and adolescents. Definition. Diagnostic criteria. Meditsinskiy sovet = Medical Council. 2016;(16):103-109. (In Russ.) https://doi.org/10.21518/2079-701X-2016-16-103-109
14. Клинические рекомендации по ведению больных с метаболическим синдромом, 2013; Утверждены на заседании пленума Российского Медицинского Общества по артериальной гипертонии 28 ноября 2013 года и профильной комиссии по кардиологии 29 ноября 2013 года. https://mzdrav.rk.gov.ru/file/mzdrav_18042014_Klinicheskie_rekomendacii_Metabolicheskij_sindrom.pdf
15. Bitew ZW, Alemu A, Ayele EG, Tenaw Z, Alebel A, Worku T. Metabolic syndrome among children and adolescents in low and middle income countries: a systematic review and meta-analysis. Diabetol Metab Syndr. 2020;12:93. doi: https://doi.org/10.1186/s13098-020-00601-8
16. International Diabetes Federation consensus worldwide definition of the metabolic syndrome. 2005
17. Zueva IB, Ulitina AS, Ghorab DN, Moskalenko M.V., Dubina MV. The role of allelic variants of angiotensin-converting enzyme ACE and serotonin transporter SLC6A4 genes in cognitive dysfunction progression in patients with metabolic syndrome. Arterial’naya Gipertenziya («Arterial Hypertension»). 2012;18(6):531-539. (In Russ.) doi: https://doi.org/10.18705/1607-419X-2012-18-6-531-539
18. Mosalev KI, Yankovskaya SV, Ivanov ID, Pinkhasov BB, Selyatitskaya VG. Association of сarriage of the rs4646994 polymorphism of the ACE gene with obesity and androgen deficiency in men. Obesity and metabolism. 2022;19(3):271-279. (In Russ.) doi: https://doi.org/10.14341/omet12843
Supplementary files
Review
For citations:
Maksimycheva T.Y., Balinova N.V., Mel’yanovskaya Yu.L., Buhonin A.V., Tarasov M.V., Tlif A.I., Basova A.V., Loshkova E.V., Kondratyeva E.I. Association of ACE and PPARGC1A gene polymorphisms with obesity phenotypes in children in the Russian Federation. Obesity and metabolism. 2025;22(3):205-213. (In Russ.) https://doi.org/10.14341/omet13167
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).




































