Preview

Obesity and metabolism

Advanced search

Genomic imprinting disorders in the structure of syndromic obesity in children

https://doi.org/10.14341/omet13276

Abstract

BACKGROUND. Genomic imprinting disorders represent a distinct class of hereditary diseases caused by disruption of the monoallelic expression of imprinted genes. Several of them are closely associated with obesity and metabolic disturbances. Syndromes such as Prader–Willi, Angelman, Schaaf–Yang, Temple, and pseudohypoparathyroidism types 1a and 1b illustrate how dysregulation of imprinted gene expression can lead to energy imbalance, hyperphagia, reduced physical activity, and abnormal fat distribution. Currently, the proportion of early-onset and severe obesity cases caused by genetic factors is steadily increasing.

AIM. To study the clinical and genetic characteristics of syndromic forms of obesity in children.

MATERIALS AND METHODS. A retrospective non-comparative study. The study included 186 patients who were examined at the Endocrinology Research Center with suspected genetic forms of obesity in the period from October 2022 to May 2025.

RESULTS. Genomic imprinting disorders were confirmed in 12% of patients (n=22), including: Prader–Willi syndrome (n=12), Angelman syndrome (n=1), Schaaf–Yang syndrome (n=1), Temple syndrome (n=1), multilocus imprinting disturbances (MLID) (n=1), and pseudohypoparathyroidism type 1a (n=6). At the time of examination: 13.6% (n=3) had overweight (BMI SDS 1.0–1.9 SD), 4.6% (n=1) had grade 1 obesity (BMI SDS 2.0–2.4 SD), 18.2% (n=4) had grade 3 obesity (BMI SDS 3.0–3.9 SD), and 40.9% (n=9) had morbid obesity (BMI SDS≥4.0 SD). Excessive weight gain during the first year of life was observed in 40.9% (n=9), and in 31.8% (n=7) starting from the second year of life. Clinical signs of hyperphagia were identified in 54.5% of cases (n=12). A positive family history of obesity was identified in 31.8% of cases (n=7). The median BMI SDS was 3.71 SD [1.8025; 4.2875]. Obesity- and overweight-related complications were observed in 13 out of 17 patients.

CONCLUSION. The study presents the genetic and clinical characteristics of genomic imprinting disorders within the structure of syndromic obesity in children in the Russian Federation.

About the Authors

O. V. Vasyukova
Endocrinology Research Centre
Russian Federation

Olga V. Vasyukova, MD, PhD

Researcher ID: AAO-375 0-2020

Scopus Author ID: 57192194141

Moscow


Competing Interests:

 Авторы декларируют отсутствие конфликта интересов



E. P. Atavina-Ermakova
Endocrinology Research Centre
Russian Federation

Evgeniia P. Atavina-Ermakova, MD

Moscow


Competing Interests:

 Авторы декларируют отсутствие конфликта интересов



E. G. Panchenko
Research Centre for Medical Genetics
Russian Federation

Elizaveta G. Panchenko

 ID РИНЦ: 1080414

WoS: JXX-3224-2024

Moscow


Competing Interests:

 Авторы декларируют отсутствие конфликта интересов



D. A. Kopytina
Endocrinology Research Centre
Russian Federation

Daria A. Kopytina, MD

Scopus Author ID: 58853779500

Moscow


Competing Interests:

 Авторы декларируют отсутствие конфликта интересов



O. A. Simonova
Research Centre for Medical Genetics
Russian Federation

Olga A. Simonova

Scopus: 56107313400

WoS: D-2157-2012

ID РИНЦ: 896923

Moscow


Competing Interests:

 Авторы декларируют отсутствие конфликта интересов



V. Y. Udalova
LLC «GENOMED»
Russian Federation

Vasilisa Y. Udalova

Scopus ID: 57897149800

Moscow


Competing Interests:

 Авторы декларируют отсутствие конфликта интересов



I. V. Kanivets
LLC «GENOMED»
Russian Federation

Ilya V. Kanivets

Moscow


Competing Interests:

 Авторы декларируют отсутствие конфликта интересов



D. B. Akimova
Research Centre for Medical Genetics
Russian Federation

Daria B. Akimova

Scopus ID: 59341366000

WoS: ADV-3867-2022

Moscow


Competing Interests:

 Авторы декларируют отсутствие конфликта интересов



M. Y. Skoblov
Research Centre for Medical Genetics
Russian Federation

Mikhail Y. Skoblov

РИНЦ Author ID: 124376

Scopus ID: 8979068100

WoS: P-1387-2015

Moscow


Competing Interests:

 Авторы декларируют отсутствие конфликта интересов



M. A. Andreeva
Endocrinology Research Centre
Russian Federation

Maria A. Andreeva

Moscow


Competing Interests:

 Авторы декларируют отсутствие конфликта интересов



E. V. Nagaeva
Endocrinology Research Centre
Russian Federation

Elena V. Nagaeva, MD, PhD

Moscow


Competing Interests:

 Авторы декларируют отсутствие конфликта интересов



N. G Mokrysheva
Endocrinology Research Centre
Russian Federation

Natalia G. Mokrysheva, MD, PhD, Professor

ResearcherID: AAY-3761-2020

Scopus Author ID: 35269746000

Moscow


Competing Interests:

 Авторы декларируют отсутствие конфликта интересов



References

1. Miho Ishida, Gudrun E Moore. The role of imprinted genes in humans. Mol Aspects Med. 2013;34(4):826-40. doi: https://doi.org/10.1016/j.mam.2012.06.009

2. Nazarenko SA. Genomic imprinting and its role in ethiology of human hereditary diseases. Bulletin of Siberian Medicine. 2004;3(3):8-17. (In Russ.)

3. J. McGrath, D. Solter. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 1984;37:179-183

4. Surani MA, Barton SC, Norris ML. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature. 1984;308(5959):548-50. doi: https://doi.org/10.1038/308548a0

5. Barlow DP, Stöger R, Herrmann BG, Saito K, Schweifer N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature. 1991;349(6304):84-7. doi: https://doi.org/10.1038/349084a0

6. Lewis A, Reik W. How imprinting centres work. Cytogenet Genome Res. 2006;113(1-4):81-9. doi: https://doi.org/10.1159/000090818

7. Debopam S. Epilepsy in Angelman syndrome: A scoping review. Brain Dev 2021;43(1):32–44. doi: https://doi.org/10.1016/j.braindev.2020.08.014

8. Angelman H. Puppet’ children. A Report on Three Cases. Development Med Child Neurol 2008. doi: https://doi.org/10.1111/j.1469-8749.1965.tb07844.x

9. Pelc K, Boyd SG, Cheron G, Dan B. Epilepsy in Angelman syndrome. Seizure 2008;17:211–217. doi: https://doi.org/10.1016/j.seizure.2007.08.004

10. Park SH, Yoon JR, Kim HD, Lee JS, Lee YM, Kang HC. Epilepsy in Korean patients with Angelman syndrome. Korean J Pediatr 2012;55:171–176. doi: https://doi.org/10.3345/kjp.2012.55.5.171

11. Thibert RL, Larson M, Hsieh DT, Raby AR, Thiele EA. Neurologic manifestations of Angelman syndrome. Pediatr Neurol 2013;48(4):271–279. doi: https://doi.org/10.1016/j.pediatrneurol.2012.09.015

12. Meng L, Person RE, Beaudet AL. Ube3a-ATS is an atypical RNA polymerase II transcript that represses the paternal expression of Ube3a. Hum Mol Genet 2012;21:3001–3012. doi: https://doi.org/10.1093/hmg/dds130

13. Khatri N, Man HY. The Autism and Angelman Syndrome Protein Ube3A/E6AP: The Gene, E3 Ligase Ubiquitination Targets and Neurobiological Functions. Front Mol Neurosci 2019;12:109. doi: https://doi.org/10.3389/fnmol.2019.00109

14. Baloghova N, Lidak T, Cermak L. Ubiquitin Ligases Involved in the Regulation of Wnt, TGF-β, and Notch Signaling Pathways and Their Roles in Mouse Development and Homeostasis. Genes (Basel) 2019;10(10):815. doi: https://doi.org/10.3390/genes10100815

15. Ramsden SC, Clayton-Smith J, Birch R, Buiting K. Practice guidelines for the molecular analysis of Prader-Willi and Angelman syndromes. BMC Med Genet 2010;11:70. doi: https://doi.org/10.1186/1471-2350-11-70

16. Duca DG, Craiu D, Boer M, Chirieac SM, Arghir A, Tutulan-Cunita A, et al. Diagnostic approach of Angelman syndrome. Maedica (Buchar) 2013;8(4):321–327

17. Lynne M Bird. Angelman syndrome: review of clinical and molecular aspects. Appl Clin Genet. 2014 May 16:7:93-104. doi: 10.2147/TACG.S57386.

18. Gorchkhanova ZK, Nikolaeva EA, Bochenkov SV, Belousova ED. Clinical manifestations of Angelman syndrome in children. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2021;66(6):63-70. (In Russ.)

19. Bindels-de Heus KGCB, Hagenaar DA, Dekker I, van der Kaay DCM, Kerkhof GF, et al. Hyperphagia, Growth, and Puberty in Children with Angelman Syndrome. J. Clin. Med. 2023;12:5981. doi: https://doi.org/10.3390/jcm12185981

20. Vihma H, Li K. Welton-Arndt A, et al. Ube3a unsilencer for the potential treatment of Angelman syndrome. Nat Commun 2024;15:5558. doi: https://doi.org/10.1038/s41467-024-49788-8

21. Tim Schubert, Christian P Schaaf. MAGEL2 (patho‐)physiology and Schaaf–Yang syndrome. Dev Med Child Neurol. 2024;67(1):35–48. doi: https://doi.org/10.1111/dmcn.16018

22. Schaaf CP, Marbach F. Schaaf‐Yang Syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews®. Seattle (WA): University of Washington, Seattle, 2021

23. Nunes S, Xavier M, Lourenço C, Melo M, Godinho C. Schaaf‐ Yang syndrome: A real challenge for prenatal diagnosis. Cureus 2021;13:e20414

24. Marbach F, Elgizouli M, Rech M, et al. The adult phenotype of Schaaf‐ Yang syndrome. Orphanet J Rare Dis 2020;15:294

25. Fountain MD, Aten E, Cho MT, et al. The phenotypic spectrum of Schaaf‐Yang syndrome: 18 new affected individuals from 14 families. Genet Med 2017;19:45–52

26. Mari A, Sartorio MUA, Degrassi I, et al. Late‐onset pyloric stenosis and intussusception with final diagnosis of food proteins’ hypersensitivity in Schaaf‐Yang syndrome: A case report. JPGN Rep 2022;3:e202

27. Soden SE, Saunders CJ, Willig LK, et al. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Sci Transl Med 2014;6:265ra168

28. de Andrade G, de Oliveira Silva T, do Nascimento I, Boath A, da Costa Cunha K, Chermont AG. Schaaf‐Yang syndrome: A novel variant in MAGEL2 gene in the first Brazilian preterm neonate. Int J Case Rep Images. 2020;11:101144Z01GA2020. doi:10.5348/101144Z01GA2020CR

29. Xu N, Shi W, Cao X, et al. Preimplantation genetic testing (PGT) and prenatal diagnosis of Schaaf‐Yang Syndrome: A report of three families and a research on genotype‐phenotype correlations. J Clin Med Res. 2023;12:1688

30. McCarthy J, Lupo PJ, Kovar E, et al. Schaaf‐Yang syndrome overview: Report of 78 individuals. Am J Med Genet A. 2018;176:2564–74

31. Juriaans AF, Kerkhof GF, Hokken‐Koelega ACS. The spectrum of the Prader‐Willi‐like pheno‐ and genotype: A review of the literature. Endocr Rev. 2022;43:1–18

32. Mejlachowicz D, Nolent F, Maluenda J, et al. Truncating Mutations of MAGEL2, a Gene within the Prader‐Willi Locus, Are Responsible for Severe Arthrogryposis. Am J Hum Genet. 2015;97:616–20

33. Dötsch L, Matesevac L, Strong TV, Schaaf CP. Caregiver‐based perception of disease burden in Schaaf‐Yang syndrome. Mol Genet Genomic Med. 2023;11:e2262

34. Powell WT, Schaaf CP, Rech ME, Wrede J. Polysomnographic characteristics and sleep‐disordered breathing in Schaaf‐Yang syndrome. Pediatr Pulmonol. 2020;55:3162–7

35. Patak J, Gilfert J, Byler M, et al. MAGEL2‐related disorders: A study and case series. Clin Genet. 2019;96:493–505

36. Alavanda C, Arslan Ateş E, Yavaş Abalı Z, Geçkinli BB, Turan S, Arman A. Two new cases with novel pathogenic variants reflecting the clinical diversity of Schaaf‐Yang syndrome. Clin Genet. 2023;104:127–32

37. Gregory LC, Shah P, Sanner JRF, et al. Mutations in MAGEL2 and L1CAM are associated with congenital hypopituitarism and arthrogryposis. J Clin Endocrinol Metab. 2019;104:5737–50

38. McCarthy JM, McCann‐Crosby BM, Rech ME, et al. Hormonal, metabolic and skeletal phenotype of Schaaf‐Yang syndrome: a comparison to Prader‐Willi syndrome. J Med Genet. 2018;55:307–15

39. Fountain MD, Schaaf CP. Prader‐Willi Syndrome and Schaaf‐Yang Syndrome: Neurodevelopmental Diseases Intersecting at the MAGEL2 Gene. Diseases. 2016;4. doi: https://doi.org/10.3390/diseases4010002

40. Dadali EL, Markova TV, Bostanova FM, et al. Special clinical manifestations and genetic characteristics of schaaf–Yang syndrome in Russian patients. Neuromuscular Diseases. 2024;14(1):42-50. (In Russ.)

41. Hoyos Sanchez MC, Bayat T, Gee RRF, Fon Tacer K. Hormonal imbalances in Prader‐Willi and Schaaf‐Yang syndromes imply the evolution of specific regulation of hypothalamic neuroendocrine function in mammals. Int J Mol Sci. 2023;24:13109

42. Lee S, Kozlov S, Hernandez L, et al. Expression and imprinting of MAGEL2 suggest a role in Prader‐willi syndrome and the homologous murine imprinting phenotype. Hum Mol Genet. 2000;9:1813–9

43. Juriaans AF, Kerkhof GF, Garrelfs M, Trueba‐Timmermans D, Hokken‐ Koelega ACS. Schaaf‐Yang syndrome: Clinical phenotype and effects of 4 years of growth hormone treatment. Horm Res Paediatr. 2023;97:148–56

44. Althammer F, Muscatelli F, Grinevich V, Schaaf CP. Oxytocin‐based therapies for treatment of Prader‐Willi and Schaaf‐Yang syndromes: evidence, disappointments, and future research strategies. Transl Psychiatry. 2022;12:318

45. Ooi YP, Weng S‐J, Kossowsky J, Gerger H, Sung M. Oxytocin and Autism Spectrum Disorders: A Systematic Review and Meta‐Analysis of Randomized Controlled Trials. Pharmacopsychiatry. 2017;50:5–13

46. Queen NJ, Zou X, Anderson JM, et al. Hypothalamic AAV‐BDNF gene therapy improves metabolic function and ys in the Magel2‐null mouse model of Prader‐Willi syndrome. Mol Ther Methods Clin Dev 2022;27:131–48

47. Bischof JM, Van Der Ploeg LHT, Colmers WF, Wevrick R. Magel2‐null mice are hyper‐responsive to setmelanotide, a melanocortin 4 receptor agonist. Br J Pharmacol 2016;173:2614–21

48. Dhuri K, Bechtold C, Quijano E, et al. Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development. J Clin Med Res 2020;9. doi: https://doi.org/10.3390/jcm9062004

49. Schaaf CP, Gonzalez-Garay ML, Xia F, et al. Truncating mutations of MAGEL2 cause Prader–Willi phenotypes and autism. Nat Genet 2013;45(11):1405–8. doi: https://doi.org/10.1038/ng.2776

50. Dagli AI, Mathews J, Williams CA. Angelman Syndrome. 1998 Sep 15 [updated 2025 May 1]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1144/

51. Williams CA, Beaudet AL, Clayton-Smith J, et al. Angelman syndrome2005: updated consensus for diagnostic criteria. Am J Med Genet A. 2006;140(5):413-418. doi: https://doi.org/10.1002/ajmg.a.31074

52. Lossie AC, Whitney MM, Amidon D, et al. Distinct phenotypes distinguish the molecular classes of Angelman syndrome. Journal of Medical Genetics. 2001;38:834-845

53. Poyatos D, Guitart M, Gabau E, et al. Severe phenotype in Angelman syndrome resulting from paternal isochromosome 15. J Med Genet. 2002;39(2):E4. doi: https://doi.org/10.1136/jmg.39.2.e4

54. Varela M, Kok F, Otto P, et al. Phenotypic variability in Angelman syndrome: comparison among different deletion classes and between deletion and UPD subjects. Eur J Hum Genet 12, 987–992 (2004). doi: https://doi.org/10.1038/sj.ejhg.5201264

55. Shinji Saitoh, Takahito Wada, Maki Okajima, Kyoko Takano, Akira Sudo, Norio Niikawa. Uniparental disomy and imprinting defects in Japanese patients with Angelman syndrome. Brain Dev. 2005;27(5):389-91. doi: https://doi.org/10.1016/j.braindev.2003.12.013

56. Luk HM, Lo IF. Angelman syndrome in Hong Kong Chinese: A 20 years’ experience. Eur J Med Genet. 2016;59(6-7):315-9. doi: https://doi.org/10.1016/j.ejmg.2016.05.003

57. Hnoonual A, Kor-Anantakul P, Charalsawadi C, Worachotekamjorn J, Limprasert P. Case Report: An Atypical Angelman Syndrome Case With Obesity and Fulfilled Autism Spectrum Disorder Identified by Microarray. Front Genet. 2021;12:755605. doi: https://doi.org/10.3389/fgene.2021.755605

58. Brennan ML, Adam MP, Seaver LH, Myers A, Schelley S, et al. Increased body mass in infancy and early toddlerhood in Angelman syndrome patients with uniparental disomy and imprinting center defects. Am J Med Genet A. 2015;167A(1):142-6. doi: https://doi.org/10.1002/ajmg.a.36831

59. Ioannides Y, Lokulo-Sodipe K, Mackay DJ, Davies JH, Temple IK. Temple syndrome: improving the recognition of an underdiagnosed chromosome 14 imprinting disorder: an analysis of 51 published cases. J Med Genet. 2014;51(8):495‐501

60. Geoffron S, Abi Habib W, Chantot-Bastaraud S, et al. Chromosome 14q32.2 imprinted region disruption as an alternative molecular diagnosis of silver-Russell syndrome. J Clin Endocrinol Metab. 2018;103(7):2436‐2446

61. Juriaans AF, Kerkhof GF, Mahabier EF, et al. Temple syndrome: clinical findings, body composition and cognition in 15 patients. J Clin Med. 2022;11(21):6289

62. Temple IK, Cockwell A, Hassold T, Pettay D, Jacobs P. Maternal uniparental disomy for chromosome 14. J Med Genet. 1991;28(8):511–514. doi: https://doi.org/10.1136/jmg.28.8.511

63. Alicia F Juriaans, Gerthe F Kerkhof, Eva F Mahabier, Theo C J Sas, Nitash Zwaveling-Soonawala, et al. Temple Syndrome: Clinical Findings, Body Composition and Cognition in 15 Patients. J Clin Med. 2022;11(21):6289. doi: https://doi.org/10.3390/jcm11216289

64. Tomoe Ogawa, Hiromune Narusawa, Keisuke Nagasaki, Rika Kosaki, Yasuhiro Naiki, et al. Temple Syndrome: Comprehensive Clinical Study in Genetically Confirmed 60 Japanese Patients. J Clin Endocrinol Metab. 2024:dgae883. doi: https://doi.org/10.1210/clinem/dgae883

65. Béatrice Dubern, Héléna Mosbah, Marie Pigeyre, Karine Clément, Christine Poitou. Rare genetic causes of obesity: Diagnosis and management in clinical care. Ann Endocrinol (Paris). 2022;83(1):63-72. doi: https://doi.org/10.1016/j.ando.2021.12.003

66. Takaesu Y, Komada Y, Inoue Y. Melatonin profile and its relation to circadian rhythm sleep disorders in Angelman syndrome patients. Sleep Med. 2012;13(9):1164–1170. doi: https://doi.org/10.1016/j.sleep.2012.06.015

67. Panchenko EG, Vasyukova OV, Okorokov PL, Kopytina DA, Sigin VO, Strelnikov VV, Zaletaev .V. A clinical case of multilocus imprinting disturbances: the first description in the Russian Federation. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2024;69(4):90-96. (In Russ.)

68. Vasyukova OV, Okorokov PL, Malievskiy OA, Neimark AE, Zorin EA, et al. Clinical guidelines «Obesity in children». Obesity and metabolism. 2024;21(4):439-453. (In Russ.)

69. Kopytina DA, Vasyukova OV, Salakhov RR, Okorokov PL, Kopytina EV, Nagaeva EV, Khusainova RI, Minniakhmetov IR, Popov SV, Bezlepkina OB, Mokrysheva NG. Identification of novel pathogenic variants in the GNAS gene in children with morbid obesity and pseudohypoparathyroidism. Obesity and metabolism. 2024;21(4):412-424. (In Russ.)


Supplementary files

Review

For citations:


Vasyukova O.V., Atavina-Ermakova E.P., Panchenko E.G., Kopytina D.A., Simonova O.A., Udalova V.Y., Kanivets I.V., Akimova D.B., Skoblov M.Y., Andreeva M.A., Nagaeva E.V., Mokrysheva N.G. Genomic imprinting disorders in the structure of syndromic obesity in children. Obesity and metabolism. 2025;22(3):180-195. (In Russ.) https://doi.org/10.14341/omet13276

Views: 24


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)