Arterial hypertension in young patients with type 1 diabetes mellitus. Dysbiosis and increased paracellular intestinal permeability as potential links of pathogenesis
https://doi.org/10.14341/omet13137
Abstract
The incidence of type 1 diabetes is increasing worldwide, especially among young patients. This trend is very unfavorable, since the risk of death of diabetic patients from cardiovascular and other concomitant diseases is five times higher than that of patients without a history of type 1 diabetes. The main causes of premature mortality are micro- and macrovascular complications, aggravated by concomitant diseases, one of which is arterial hypertension. The risk of complications such as acute cerebral circulatory disorders, myocardial infarction, limb amputation, heart failure and sudden cardiac death increases with increasing duration and severity of hypertension, especially with its uncontrolled course. Patients with type 1 diabetes who are under inpatient or outpatient supervision and treatment, for the most part, do not control blood pressure, or are guided by data from home/office blood pressure measurements. In our opinion, it is worth paying special attention to screening diagnostics, early detection, as well as profiles of increased blood pressure in patients with type 1 diabetes, as this will allow us to consider the possibility of initiating antihypertensive treatment or optimizing therapeutic approaches to the management of this group of patients, and is also key to reducing the risk of adverse outcomes of this disease.
About the Authors
R. Kh. UseinovaRussian Federation
Rean Kh. Useinova
ResearcherID: JFS-3563-2023
Scopus Author ID: 57223343609
4 Academician Vernadsky avenue, Republic of Crimea, Simferopol
Simferopol
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
V. A. Beloglazov
Russian Federation
Vladimir A. Beloglazov, MD, PhD, Professor
Scopus Author ID: 7007129056
Simferopol
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
I. N. Repinskaya
Russian Federation
Irina N. Repinskaya, MD
Simferopol
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
I. A. Yatskov
Russian Federation
Igor A. Yatskov, MD
Scopus Author ID: 57218873902
Simferopol
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
References
1. Kheriji N, Dakhlaoui T, Kamoun Rebai W, et al. Prevalence and risk factors of diabetes mellitus and hypertension in North East Tunisia calling for efficient and effective actions. Sci Rep. 2023;13(1):12706. doi: https://doi.org/10.1038/s41598-023-39197-0
2. Avogaro A, Fadini GP. Microvascular complications in diabetes: A growing concern for cardiologists. Int J Cardiol. 2019;291:29-35. doi: https://doi.org/10.1016/j.ijcard.2019.02.030
3. Harjutsalo V, Pongrac Barlovic D, Groop PH. Longterm population-based trends in the incidence of cardiovascular disease in individuals with type 1 diabetes from Finland: a retrospective, nationwide, cohort study. Lancet Diabetes Endocrinol. 2021;9:575–85. doi: https://doi.org/10.1016/S2213-8587(21)00172-8
4. Jansson Sigfrids F, Groop PH, Harjutsalo V. Incidence rate patterns, cumulative incidence, and time trends for moderate and severe albuminuria in individuals diagnosed with type 1 diabetes aged 0-14 years: a population-based retrospective cohort study. Lancet Diabetes Endocrinol. 2022;10:489–98. doi: https://doi.org/10.1016/S2213-8587(22)00099-7
5. Mogensen CE. Microalbuminuria and hypertension with focus on type 1 and type 2 diabetes. J Intern Med 2003;254:45–66. doi: https://doi.org/10.1046/j.1365-2796.2003.01157.x
6. Sugandh F, Chandio M, Raveena F, et al. Advances in the Management of Diabetes Mellitus: A Focus on Personalized Medicine. Cureus. 2023;15(8):e43697. doi: https://doi.org/10.7759/cureus.43697
7. Yun JS, Ko SH. Current trends in epidemiology of cardiovascular disease and cardiovascular risk management in type 2 diabetes. Metabolism. 2021;123:154838. doi: https://doi.org/10.1016/j.metabol.2021.154838
8. Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE. Management of diabetes and hyperglycaemia in the hospital. Lancet Diabetes Endocrinol. 2021;9(3):174-188. doi: https://doi.org/10.1016/S2213-8587(20)30381-8
9. Burgos-Morón E, Abad-Jiménez Z, Marañón AM, et al. Relationship Between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues. J Clin Med. 2019;8(9):1385. doi: https://doi.org/10.3390/jcm8091385
10. Al-Gadi IS, Haas RH, Falk MJ, Goldstein A, McCormack SE. Endocrine Disorders in Primary Mitochondrial Disease. J Endocr Soc. 2018;2(4):361-373. doi: https://doi.org/10.1210/js.2017-00434
11. Zajec A, Trebušak Podkrajšek K, Tesovnik T, et al. Pathogenesis of Type 1 Diabetes: Established Facts and New Insights. Genes (Basel). 2022;13(4):706. doi: https://doi.org/10.3390/genes13040706 12. Cook KL, Chappell MC. Gut dysbiosis and hypertension: is it cause or effect?. J Hypertens. 2021;39(9):1768-1770. doi: https://doi.org/10.1097/HJH.0000000000002908
12. Verhaar BJH, Prodan A, Nieuwdorp M, Muller M. Gut Microbiota in Hypertension and Atherosclerosis: A Review. Nutrients. 2020; 12(10):2982. doi: https://doi.org/org/10.3390/nu12102982
13. Chen X, Li P, Liu M, et al. Gut dysbiosis induces the development of pre-eclampsia through bacterial translocation. Gut. 2020;69(3):513-522. doi: https://doi.org/10.1136/gutjnl-2019-319101
14. Wang S, Cui Z, Yang H. Interactions between host and gut microbiota in gestational diabetes mellitus and their impacts on offspring. BMC Microbiol. 2024;24(1):161. doi: https://doi.org/10.1186/s12866-024-03255-y
15. Santisteban MM, Qi Y, Zubcevic J, et al. Hypertension-Linked Pathophysiological Alterations in the Gut. Circ Res. 2017;120(2):312-323. doi: https://doi.org/10.1161/CIRCRESAHA.116.309006
16. Gavin PG, Hamilton-Williams EE. The gut microbiota in type 1 diabetes: friend or foe? Curr Opin Endocrinol Diabetes Obes. 2019;26(4):207-212. doi: https://doi.org/10.1097/MED.0000000000000483
17. Luo M, Sun M, Wang T, et al. Gut microbiota and type 1 diabetes: a two-sample bidirectional Mendelian randomization study. Front Cell Infect Microbiol. 2023;13:1163898. doi: https://doi.org/10.3389/fcimb.2023.1163898
18. Buford TW, Sun Y, Roberts LM, et al. Angiotensin (1-7) delivered orally via probiotic, but not subcutaneously, benefits the gut-brain axis in older rats. Geroscience. 2020;42(5):1307-1321. doi: https://doi.org/10.1007/s11357-020-00196-y
19. de Goffau MC, Luopajärvi K, Knip M, et al. Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes. 2013;62(4):1238-1244. doi: https://doi.org/10.2337/db12-0526
20. Amiri P, Hosseini SA, Ghaffari S, et al. Role of Butyrate, a Gut Microbiota Derived Metabolite, in Cardiovascular Diseases: A comprehensive narrative review. Front Pharmacol. 2022;12:837509. doi: https://doi.org/10.3389/fphar.2021.837509
21. Brown CT, Davis-Richardson AG, Giongo A, et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One. 2011;6(10):e25792. doi: https://doi.org/10.1371/journal.pone.0025792
22. Zhou H, Sun L, Zhang S, Zhao X, Gang X, Wang G. Evaluating the Causal Role of Gut Microbiota in Type 1 Diabetes and Its Possible Pathogenic Mechanisms. Front Endocrinol (Lausanne). 2020;11:125. doi: https://doi.org/10.3389/fendo.2020.00125
23. Massimo F Piepoli, Arno W Hoes, Stefan Agewall, Christian Albus, Carlos Brotons, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts). European Heart Journal, 2016;37(29). doi: https://doi.org/10.1093/eurheartj/ehw106
24. Gorbunov VM. Pozitsiia sutochnogo monitorirovaniia arterial’nogo davleniia v sovremennoi praktike. Kardiovaskuliarnaia terapiia i profilaktika. 2022;(21):3456. (In Russ).
25. Fucile I, Manzi MV, Mancusi C. Blood Pressure and Lipid Profile in Hypertensive Patients Post the First COVID-19 Lockdown: «Brief Letter for Publication». High Blood Press Cardiovasc Prev. 2021;28(5):493-494. doi: https://doi.org/10.1007/s40292-021-00470-w
26. Williams B, Mancia G, Spiering W, AgabitiRosei E, Azizi M, Burnier M. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial h. J Hypertens. 2018;36(10):1953–2041. doi: https://doi.org/10.1097/HJH.0000000000001940.
27. Kobalava ZhD, Stavtseva YuV, Troitskaya EA, Safarova AF, Petrosyan AE. Fenotipy arterialnogo davleniya u patsientov molodogo vozrasta s sakharnym diabetom pervogo tipa. Rossiyskiy kardiologicheskiy zhurnal. 2020;(25):3729. (In Russ).
28. Dost A, Klinkert C, Kapellen T, Lemmer A, Naeke A, Grabert M, et al. Arterial hypertension determined by ambulatory blood pressure profiles: contribution to microalbuminuria risk in a multicenter investigation in 2,105 children and adolescents with type 1 diabetes. Diabetes Care 2008;31:720–5. doi: https://doi.org/10.2337/dc07-0824
29. Hermida RC, Ayala DE, Fernandez JR, Mojon A, Smolensky MH. Hypertension: new perspective on its definition and clinical management by bedtime therapy substantially reduces cardiovascular disease risk. Eur J Clin Invest 2018;48: e12909. doi: https://doi.org/10.1111/eci.12909.
30. Najafi MT, Khaloo P, Alemi H, Jaafarinia A, Blaha MJ, Mirbolouk M, et al. Ambulatory blood pressure monitoring and diabetes complications: targeting morning blood pressure surge and nocturnal dipping. Medicine (Baltimore) 2018;97:e12185. doi: https://doi.org/10.1097/MD.0000000000012185.
31. Spallone V, Maiello MR, Morganti R, Mandica S, Frajese G. Usefulness of ambulatory blood pressure monitoring in predicting the presence of autonomic neuropathy in type I diabetic patients. J Hum Hypertens 2007;21:381–6. doi: https://doi.org/10.1038/sj.jhh.1002162.
32. Lurbe E, Redon J, Pascual JM, Tacons J, Alvarez V. The spectrum of circadian blood pressure changes in type I diabetic patients. J Hypertens 2001;19:1421–8. doi: https://doi.org/10.1097/00004872-200108000-00010
33. James S, Perry L. Lowe J, et al. Blood pressure in adolescents and young adults with type 1 diabetes: data from the Australasian Diabetes Data Network registry. Acta Diabetol 2023;60:797–803. doi: https://doi.org/10.1007/s00592-023-02057-4
34. Ogle GD, James S, Dabelea D, et al. Global estimates of incidence of type 1 diabetes in children and adolescents: Results from the International Diabetes Federation Atlas, 10th edition. Diabetes Res Clin Pract. 2022;183:109083. doi: https://doi.org/10.1016/j.diabres.2021.109083
Supplementary files
Review
For citations:
Useinova R.Kh., Beloglazov V.A., Repinskaya I.N., Yatskov I.A. Arterial hypertension in young patients with type 1 diabetes mellitus. Dysbiosis and increased paracellular intestinal permeability as potential links of pathogenesis. Obesity and metabolism. 2025;22(3):214-221. (In Russ.) https://doi.org/10.14341/omet13137
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).




































