Preview

Obesity and metabolism

Advanced search

Bone remodeling in experimental diabetes mellitus and surgical menopause in Wistar rats

https://doi.org/10.14341/omet12961

Abstract

BACKGROUND: Osteoporosis is metabolic skeletal disease characterized with low bone mass, bone microarchitecture disturbance that together lead to high prevalence of fragility fractures. Postmenopausal osteoporosis accounts for about 80% of the osteoporosis structure in women over 50 years. Diabetes mellitus (DM) is an independent risk factor for low-traumatic fractures. The incidence of both type 2 DM and osteoporosis increases during menopause. Therefore, the study of bone metabolism in experimental diabetes and surgical menopause seems important.

THE AIM of the study was to investigate bone metabolism parameters during menopause and experimental type 2 DM.

MATERIALS AND METHODS: The half of female Wistar rats had been subjected to bilateral ovariectomy at the beginning of the experiment. Diabetes mellitus (DM) was modelled using a high-fat diet and streptozotocin+nicotinamide. Four weeks after the following groups were formed: «Сontrol» (females without any interventions receiving standard chew, n=5) «OE» (females after ovariectomy n=5), «DM» (females with DM, n=4), «OE+DM» (females after ovariectomy with DM, n=4). The observation period lasted 8 weeks. Bone turnover and calcium-phosphorus metabolism markers (osteocalcin, osteoprotegerin (OPG), nuclear factor-kappa-beta receptor activator ligand (RANKL), sclerostin, fibroblast growth factor-23 (FGF-23), calcium, phosphorus) were measured in the end of experiment. Bone histomorphometry was performed after euthanasia.

RESULTS: Phosphorus level was significantly lower both in the «OE» group (1.63 [1.58; 1.65] mmol/L) and in the «DM» group (2.81 [2.57; 2.83] mmol /l) compared to the «Control» group (3.12 [2.55; 3.24] mmol/l) (p<0.001). This marker was significantly higher in the «OE+DM» group (2.79 [2.46; 2.81] mmol/l) in comparison to the «OE» group (2.79 [2.46; 2.81] mmol /l), p=0.025. Osteocalcin level was significantly lower in the «DM» group (8.1 [7.8; 9.2] ng/ml) compared to the «Control» group (16.97 [14.07; 17.07] ng/ml ), p=0.005. A weak negative correlation (r= -0.5, p<0,05) was found between glucose and osteocalcin levels (p=0.03). RANKL level was significantly lower in the «OE+DM» group (278,1 [273.1; 289.7] pg/mL) compared to the «OE» group (400.6 [394.5; 415.1] pg/mL), besides the OPG/RANKL ratio was higher in this group (0.03 [0.02; 0.035] and 0.01 [0.004; 0.014], respectively), p=0.05. In the «OE» group lower OPG level (5.1 [1.5; 5.6] pmol/L) and OPG/RANKL ratio (0.01 [0.003; 0.014]) were obtained in comparison to the «Control» group (12.3 [8.8; 14.2] pmol/l and (0.34[0.33; 0.4], p=0.025 and p=0.07, respectively. The area of bone trabeculae in the epiphyseal zone was the largest in the «Control» group (42 [39; 45]) %; the difference was significant compared to the «OE» group (29 [25; 33] %, p=0.011) and the «OE+DM» group (30 [23; 25] %, p=0.016). The area of bone trabeculae in the metaepiphyseal zone was also the largest in the «Control» group (49 [46; 52] %) compared to the «OE» (35 [25; 39] %), «DM» (31 [26; 34] %), «OE+DM» (35 [33; 38] %), p<0.001. There was no difference in the thickness of the bone trabeculae among the groups.

CONCLUSION: DM induction can significantly inhibit bone remodeling in animals without menopause, which is reflected in a lower osteocalcin level. Bone turnover during DM and surgical menopause is characterized by lower RANKL levels and higher OPG/RANKL ratio. The effect of ovariectomy on bone metabolism was manifested in more extensive decrease in bone trabeculae area than in DM.

About the Authors

N. V. Timkina
Almazov National Medical Research Centre; Pavlov First Saint-Petersburg State Medical University
Russian Federation

Natalya V. Timkina

Researcher ID: ABG-3536-2021
Scopus Author ID: 57222553770
eLibrary SPIN: 6259-7745

2 Akkuratov Street, 197341 Saint-Petersburg

 



A. V. Simanenkova
Almazov National Medical Research Centre; Pavlov First Saint-Petersburg State Medical University
Russian Federation

Anna V. Simanenkova, MD, PhD

eLibrary SPIN 3675-9216

Saint-Petersburg



A. A. Bayramov
Almazov National Medical Research Centre
Russian Federation

Alekber A. Bayramov, MD, PhD

eLibrary SPIN: 9802-9988

Saint-Petersburg



M. A. Kokina
Almazov National Medical Research Centre
Russian Federation

Maria A. Kokina

eLibrary SPIN: 3522-6052

Saint-Petersburg



N. Yu. Semenova
Almazov National Medical Research Centre; Russian Scientific Research Institute of Hematology and Transfusiology
Russian Federation

Natalya Yu. Semenova, PhD in Biology

eLibrary SPIN: 3566-4723

Saint-Petersburg



A. Z. Gagiev
Pavlov First Saint-Petersburg State Medical University
Russian Federation

Alexandr Z. Gagiev

eLibrary SPIN: 3054-6383

Saint-Petersburg



T. L. Karonova
Almazov National Medical Research Centre; Pavlov First Saint-Petersburg State Medical University
Russian Federation

Tatiana L. Karonova, PhD, Professor

eLibrary SPIN: 3337-4071

Saint-Petersburg



E. N. Grineva
Almazov National Medical Research Centre
Russian Federation

Elena N. Grineva, PhD, Professor

eLibrary SPIN: 2703-0841

Saint-Petersburg



References

1. Kanis JA. Assessment of osteoporosis at the primary health-care level. World Health Organization Collaborating Centre for Metabolic Bone Diseases, University of Sheffield, UK. 2007. Technical Report. World Health Organization Scientific Group.

2. Kanis JA, Norton N, Harvey NC, et al. SCOPE 2021: a new scorecard for osteoporosis in Europe. Arch Osteoporos. 2021;16(1):82. doi: https://doi.org/10.1007/s11657-020-00871-9

3. Pigarova EA, Rozhinskaya LY, Belaya ZE, et al. Russian Association of Endocrinologists recommendations for diagnosis, treatment and prevention of Vitamin D deficiency in adults. Problems of Endocrinology. 2016;62(4):60-84. doi: https://doi.org/10.14341/probl201662460-84

4. Armas LA, Recker RR. Pathophysiology of osteoporosis: new mechanistic insights. Endocrinol Metab Clin North Am. 2012;41(3):475-486. doi: https://doi.org/10.1016/j.ecl.2012.04.006

5. Recker R, Lappe J, Davies K, Heaney R. Characterization of perimenopausal bone loss: a prospective study. J Bone Miner Res. 2000;15(10):1965-1973. doi: https://doi.org/10.1359/jbmr.2000.15.10.1965

6. Akhter MP, Lappe JM, Davies KM, Recker RR. Transmenopausal changes in the trabecular bone structure. Bone. 2007;41(1):111-116. doi: https://doi.org/10.1016/j.bone.2007.03.019

7. International Diabetes Federation [Internet]. IDF Diabetes Atlas, 10th edn. Brussels, Belgium: 2021. Available at: https://www.diabetesatlas.org

8. Napoli N, Strotmeyer ES, Ensrud KE, et al. Fracture risk in diabetic elderly men: the MrOS study. Diabetologia. 2014;57(10):2057-2065. doi: https://doi.org/10.1007/s00125-014-3289-6

9. Wallander M, Axelsson KF, Nilsson AG, et al. Type 2 diabetes and risk of hip fractures and non-skeletal fall injuries in the elderly: a study from the Fractures and Fall Injuries in the Elderly Cohort (FRAILCO). J Bone Miner Res. 2017;32(3):449-460. doi: https://doi.org/10.1002/jbmr.3002

10. Schwartz AV, Vittinghoff E, Bauer DC, et al. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA. 2011;305(21):2184-2192. doi: https://doi.org/10.1001/jama.2011.715

11. Bonds DE, Larson JC, Schwartz AV, et al. Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J Clin Endocrinol Metab. 2006;91(9):3404-3410. doi: https://doi.org/10.1210/jc.2006-0614

12. Schwartz AV, Sellmeyer DE, Ensrud KE, et al. Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab. 2001;86(1):32-38. doi: https://doi.org/10.1210/jcem.86.1.7139

13. Majumdar SR, Leslie WD, Lix LM, et al. Longer duration of diabetes strongly impacts fracture risk assessment: The manitoba BMD cohort. J Clin Endocrinol Metab. 2016;101(11):4489-4496. doi: https://doi.org/10.1210/jc.2016-2569

14. Sanz C, Vázquez P, Blázquez C, et al. Signaling and biological effects of glucagon-like peptide 1 on the differentiation of mesenchymal stem cells from human bone marrow. Am J Physiol Endocrinol Metab. 2010;298(3):E634-E643. doi: https://doi.org/10.1152/ajpendo.00460.2009

15. Lu N, Sun H, Yu J, et al. Glucagon-like peptide-1 receptor agonist Liraglutide has anabolic bone effects in ovariectomized rats without diabetes. PLoS One. 2015;10(7):e0132744. doi: https://doi.org/10.1371/journal.pone.0132744

16. Kohan DE, Fioretto P, Tang W, List JF. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 2014;85(4):962-971. doi: https://doi.org/10.1038/ki.2013.356

17. Watts NB, Bilezikian JP, Usiskin K, et al. Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2016;101(1):157-166. doi: https://doi.org/10.1210/jc.2015-3167

18. Bayrasheva VK, Babenko AY, Dobronravov VA, et al. Uninephrectomized high-fat-fed nicotinamide-streptozotocin-induced diabetic rats: A model for the investigation of diabetic nephropathy in type 2 diabetes. J Diabetes Res. 2016;2016(1):1-18. doi: https://doi.org/10.1155/2016/8317850

19. Simanenkova A, Minasian S, Karonova T, et al. Comparative evaluation of metformin and liraglutide cardioprotective effect in rats with impaired glucose tolerance. Sci Rep. 2021;11(1):6700. doi: https://doi.org/10.1038/s41598-021-86132-2

20. Magradze RN, Lisovsky AD, Zelener AO, et al. Evaluation of the therapeutic potential of gonadotropin and kisspeptin in experimental ischemic ovarian injury. Vestnik Smolenskoj gosudarstvennoj medicinskoj akademii. 2022;21(2):5-13. (In Russ.). doi: https://doi.org/10.37903/vsgma.2022.2.1

21. Yoon KH, Cho DC, Yu SH, et al. The change of bone metabolism in ovariectomized rats : analyses of microct scan and biochemical markers of bone turnover. J Korean Neurosurg Soc. 2012;51(6):323-327. doi: https://doi.org/10.3340/jkns.2012.51.6.323

22. Sims NA, Morris HA, Moore RJ, Durbridge TC. Increased bone resorption precedes increased bone formation in the ovariectomized rat. Calcif Tissue Int. 1996;59(2):121-127. doi: https://doi.org/10.1007/s002239900098

23. Aeimlapa R, Wongdee K, Tiyasatkulkovit W, et al. Anomalous bone changes in ovariectomized type 2 diabetic rats: inappropriately low bone turnover with bone loss in an estrogen-deficient condition. Am J Physiol Endocrinol Metab. 2019;317(4):E646-E657. doi: https://doi.org/10.1152/ajpendo.00093.2019

24. Kimura S, Sasase T, Ohta T, Matsushita M. Effects of ovariectomy on bone metabolism and bone mineral density in spontaneously diabetic Torii-Lepr(fa) rats. J Vet Med Sci. 2011;73(8):1025-1029. doi: https://doi.org/10.1292/jvms.11-0064

25. Herrero S, Calvo OM, García-Moreno C, et al. Low bone density with normal bone turnover in ovariectomized and streptozotocin-induced diabetic rats. Calcif Tissue Int. 1998;62(3):260-265. doi: https://doi.org/10.1007/s002239900427


Supplementary files

1. Figure 1. Study designControl — rats without any intervention.
Subject
Type Исследовательские инструменты
View (398KB)    
Indexing metadata ▾
2. Figure 2. Glucose and weight during study.
Subject
Type Исследовательские инструменты
View (363KB)    
Indexing metadata ▾
3. Figure 3. Phosphorus-calcium metabolism in Wistar rats at the end of the experiment A) Serum calcium level, mmol/l; B) Serum phosphorus level, mmol/l; C) Serum FGF-23 level, pmol/l.
Subject
Type Исследовательские инструменты
View (247KB)    
Indexing metadata ▾
4. Figure 4. Serum levels of osteocalcin and sclerostin in Wistar rats at the end of the experiment: A) Concentration of osteocalcin, ng/ml; B) Sclerostin concentration, pmol/l.
Subject
Type Исследовательские инструменты
View (164KB)    
Indexing metadata ▾
5. Figure 5. Serum RANKL, osteoprotegerin in Wistar rats, and osteoprotegerin/RANKL ratio at the end of the experiment. A) RANKL, pg/ml, B) Osteoprotegerin, pmol/l C) osteoprotegerin/RANKL ratio.
Subject
Type Исследовательские инструменты
View (268KB)    
Indexing metadata ▾
6. Figure 6. Epiphyseal region of the femur with bone beams in Wistar rats in the Control group (A), after ovariectomy (B), with DM (C), after ovariectomy with DM (D). Stained with hematoxylin-eosin, uv. ×100.
Subject
Type Исследовательские инструменты
View (774KB)    
Indexing metadata ▾
7. Figure 7. Histomorphometry parameters of the bone tissue of Wistar rats. A) Area of bone trabeculae in the epiphyseal area, % B) Area of osseous trabeculae in the metaepiphyseal area C) Thickness of cortical trabeculae, px.
Subject
Type Исследовательские инструменты
View (277KB)    
Indexing metadata ▾

Review

For citations:


Timkina N.V., Simanenkova A.V., Bayramov A.A., Kokina M.A., Semenova N.Yu., Gagiev A.Z., Karonova T.L., Grineva E.N. Bone remodeling in experimental diabetes mellitus and surgical menopause in Wistar rats. Obesity and metabolism. 2023;20(3):189-200. (In Russ.) https://doi.org/10.14341/omet12961

Views: 793


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)