Preview

Ожирение и метаболизм

Расширенный поиск

Beta-cell autophagy under the scope of hypoglycemic drugs; possible mechanism as a novel therapeutic target

https://doi.org/10.14341/omet12778

Аннотация

Physiologically, autophagy is a major protective mechanism of β-cells from apoptosis, through can reserve normal β- cell mass and inhibit the progression of β-cells destruction. Beta-cell mass can be affected by differentiation from progenitors and de-differentiation as well as self-renewal and apoptosis. Shred evidence indicated that hypoglycemic drugs can induce β-cell proliferation capacity and neogenesis via autophagy stimulation. However, prolonged use of selective hypoglycemic drugs has induced pancreatitis besides several other factors that contribute to β-cell destruction and apoptosis initiation. Interestingly, some nonhypoglycemic medications possess the same effects on β-cells but depending on the combination of these drugs and the duration of exposure to β-cells. The paper comprehensively illustrates the role of the hypoglycemic drugs on the insulin-producing cells and the pathogeneses of β-cell destruction in type 2 diabetes mellitus, in addition to the regulation mechanisms of β-cells division in norm and pathology. The grasping of the hypoglycemic drug’s role in beta-cell is clinically crucial to evaluate novel therapeutic targets such as new signaling pathways. The present paper addresses a new strategy for diabetes mellitus management via targeting specific autophagy inducer factors (transcription factors, genes, lipid molecules, etc.).

Об авторах

B. А. Marzoog
Ogarev Mordovia State University
Россия

Basheer Abdullah Marzoog - undergraduate student; Researcher ID: AAD-6284-2021.

68 Bolshevitskaya str., 430005 Saransk


Конфликт интересов:

The authors declare no obvious and potential conflicts of interest related to the content of this article



T. I. Vlasova
Ogarev Mordovia State University
Россия

Tatyana Ivanovna Vlasova, MD, PhD, professor; eLibrary SPIN: 5314-3771.

Saransk


Конфликт интересов:

The authors declare no obvious and potential conflicts of interest related to the content of this article



Список литературы

1. DeVries JH, Rosenstock J. DPP-4 Inhibitor-Related Pancreatitis: Rare but Real! Diabetes Care. 2017;40:161-163. doi: https://doi.org/10.2337/dci16-0035

2. Sada K, Nishikawa T, Kukidome D, et al. Hyperglycemia induces cellular hypoxia through production of mitochondrial ROS followed by suppression of aquaporin-1. PLoS One. 2016;11. doi: https://doi.org/10.1371/journal.pone.0158619

3. Marzoog B. Lipid behavior in metabolic syndrome pathophysiology. Curr Diabetes Rev. 2021;17. doi: https://doi.org/10.2174/1573399817666210915101321

4. Lim S, Bae JH, Kwon H-S, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol. 2021;17:11-30. doi: https://doi.org/10.1038/s41574-020-00435-4

5. Rubino F, Amiel SA, Zimmet P, et al. New-Onset Diabetes in Covid-19. N Engl J Med. 2020;383(8):789-790. doi: https://doi.org/10.1056/NEJMc2018688

6. Brereton MF, Iberl M, Shimomura K, et al. Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nat Commun. 2014;5:4639. doi: https://doi.org/10.1038/ncomms5639

7. Cinti F, Bouchi R, Kim-Muller JY, et al. Evidence of β-Cell Dedifferentiation in Human Type 2 Diabetes. J Clin Endocrinol Metab. 2016;101:1044-1054. doi: https://doi.org/10.1210/jc.2015-2860

8. Cheng STW, Li SYT, Leung PS. Fibroblast Growth Factor 21 Stimulates Pancreatic Islet Autophagy via Inhibition of AMPK-mTOR Signaling. Int J Mol Sci. 2019;20:2517. doi: https://doi.org/10.3390/ijms20102517.

9. Talchai C, Xuan S, Lin HV, et al. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell. 2012;150:1223-1234. doi: https://doi.org/10.1016/j.cell.2012.07.029.

10. Bensellam M, Jonas JC, Laybutt DR. Mechanisms of β-cell dedifferentiation in diabetes: Recent findings and future research directions. J Endocrinol. 2018;236:109-143. doi: https://doi.org/10.1530/JOE-17-0516.

11. DiNicolantonio JJ, McCarty M. Autophagy-induced degradation of Notch1, achieved through intermittent fasting, may promote beta cell neogenesis: implications for reversal of type 2 diabetes. Open Hear. 2019;6(1):e001028. doi: https://doi.org/10.1136/openhrt-2019-001028

12. Lambelet M, Terra LF, Fukaya M, et al. Dysfunctional autophagy following exposure to pro-inflammatory cytokines contributes to pancreatic β-cell apoptosis. Cell Death Dis. 2018;9:96. doi: https://doi.org/10.1038/s41419-017-0121-5

13. Hu M, Yang S, Yang L, et al. Interleukin-22 Alleviated Palmitate-Induced Endoplasmic Reticulum Stress in INS-1 Cells through Activation of Autophagy. PLoS One. 2016;11(1):e0146818. doi: https://doi.org/10.1371/journal.pone.0146818

14. Linnemann AK, Blumer J, Marasco MR, et al. Interleukin 6 protects pancreatic b cells from apoptosis by stimulation of autophagy. FASEB J. 2017;31:4140-4152. doi: https://doi.org/10.1096/fj.201700061RR

15. Butler PC, Meier JJ, Butler AE, Bhushan A. The replication of β cells in normal physiology, in disease and for therapy. Nat Clin Pract Endocrinol Metab. 2007;3:758-768. doi: https://doi.org/10.1038/ncpendmet0647

16. Talchai C, Lin HV, Kitamura T, Accili D. Genetic and biochemical pathways of β-cell failure in type 2 diabetes. Diabetes, Obes Metab. 2009;11:38-45. doi: https://doi.org/10.1111/j.1463-1326.2009.01115.x

17. Marasco MR, Linnemann AK. B-Cell autophagy in diabetes pathogenesis. Endocrinology. 2018;159:2127-2141. doi: https://doi.org/10.1210/en.2017-03273

18. Riahi Y, Wikstrom JD, Bachar-Wikstrom E, et al. Autophagy is a major regulator of beta cell insulin homeostasis. Diabetologia. 2016;59:1480-1491. doi: https://doi.org/10.1007/s00125-016-3868-9

19. Ren L, Yang H, Cui Y, et al. Autophagy is essential for the differentiation of porcine PSCs into insulin-producing cells. Biochem Biophys Res Commun. 2017;488:471-476. doi: https://doi.org/10.1016/j.bbrc.2017.05.058

20. Choi SE, Lee SM, Lee YJ, et al. Protective role of autophagy in palmitate-induced INS-1 β-cell death. Endocrinology. 2009;150:126-134. doi: https://doi.org/10.1210/en.2008-0483

21. Wu J, Kong F, Pan Q, et al. Autophagy protects against cholesterol-induced apoptosis in pancreatic β-cells. Biochem Biophys Res Commun. 2017;482:678-685. doi: https://doi.org/10.1016/j.bbrc.2016.11.093

22. Sheng Q, Xiao X, Prasadan K, et al. Autophagy protects pancreatic beta cell mass and function in the setting of a high-fat and high-glucose diet. Sci Rep. 2017;7(1):16348. doi: https://doi.org/10.1038/s41598-017-16485-0

23. Goginashvili A, Zhang Z, Erbs E, et al. Insulin secretory granules control autophagy in Pancreatic β cells. Science (80-). 2015;347:878-882. doi: https://doi.org/10.1126/science.aaa2628.

24. Li C, Li X, Han H, et al. Effect of probiotics on metabolic profiles in type 2 diabetes mellitus. Medicine (Baltimore). 2016;95(26):e4088. doi: https://doi.org/10.1097/MD.0000000000004088

25. Patti M-E, Corvera S. The Role of Mitochondria in the Pathogenesis of Type 2 Diabetes. Endocr Rev. 2010;31(3):364-395. doi: https://doi.org/10.1210/er.2009-0027

26. Xu S, Sun F, Ren L, Yang H, Tian N, Peng S. Resveratrol controlled the fate of porcine pancreatic stem cells through the Wnt/β-catenin signaling pathway mediated by Sirt1. PLoS One. 2017;12(10):e0187159. doi: https://doi.org/10.1371/journal.pone.0187159

27. Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;432(7020):1032-1036. doi: https://doi.org/10.1038/nature03029

28. Mizukami H, Takahashi K, Inaba W, et al. Involvement of oxidative stress-induced DNA damage, endoplasmic reticulum stress, and autophagy deficits in the decline of β-cell mass in Japanese type 2 diabetic patients. Diabetes Care. 2014;37:1966-1974. doi: https://doi.org/10.2337/DC13-2018.

29. Murphy R, Carroll RW, Krebs JD. Pathogenesis of the metabolic syndrome: insights from monogenic disorders. Mediators Inflamm. 2013;2013:920214. doi: https://doi.org/10.1155/2013/920214.

30. Nica AC, Ongen H, Irminger J-C, et al. Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome. Genome Res. 2013;23:1554-1562. doi: https://doi.org/10.1101/gr.150706.112

31. Brunetti A, Chiefari E, Foti D. Perspectives on the contribution of genetics to the pathogenesis of type 2 diabetes mellitus. Recenti Prog Med. 2011;102:468-475. doi: https://doi.org/10.1701/998.10858.

32. Kalin MF, Goncalves M, John-Kalarickal J, Fonseca V. Pathogenesis of type 2 diabetes mellitus. Princ. Diabetes Mellit. 2017. doi: https://doi.org/10.1007/978-3-319-18741-9_13

33. Raimondo A, Thomsen SK, Hastoy B, et al. Type 2 Diabetes Risk Alleles Reveal a Role for Peptidylglycine Alpha-amidating Monooxygenase in Beta Cell Function. bioRxiv. 2017. doi: https://doi.org/10.1101/158642

34. Cnop M, Welsh N, Jonas JC, et al. Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: Many differences, few similarities. Diabetes. 2005;54:S97-107. doi: https://doi.org/10.2337/diabetes.54.suppl_2.S97.

35. Ozougwu O. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J Physiol Pathophysiol. 2013;4:46-57. doi: https://doi.org/10.5897/JPAP2013.0001

36. Ashcroft FM, Rorsman P. Molecular defects in insulin secretion in type-2 diabetes. Rev Endocr Metab Disord. 2004;5:135-142. doi: https://doi.org/10.1023/B:REMD.0000021435.87776.a7.

37. Butler AE, Janson J, Bonner-Weir S, et al. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102-110. doi: https://doi.org/10.2337/diabetes.52.1.102.

38. Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia. 2003;46:3-19. doi: https://doi.org/10.1007/s00125-002-1009-0

39. Abdel-Moneim A, Bakery HH, Allam G. The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus. Biomed Pharmacother. 2018;101:287-292. doi: https://doi.org/10.1016/j.biopha.2018.02.103

40. Marzoog BA, Vlasova TI. Transcription Factors in Deriving β Cell Regeneration; A Potential Novel Therapeutic Target. Curr Mol Med. 2021;21. doi: https://doi.org/10.2174/1566524021666210712144638

41. Dalle S, Burcelin R, Gourdy P. Specific actions of GLP-1 receptor agonists and DPP4 inhibitors for the treatment of pancreatic β-cell impairments in type 2 diabetes. Cell Signal. 2013;25:570-579. doi: https://doi.org/10.1016/j.cellsig.2012.11.009

42. Jiang Y, Huang W, Wang J, et al. Metformin Plays a Dual Role in MIN6 Pancreatic β Cell Function through AMPK-dependent Autophagy. Int J Biol Sci. 2014;10:268-277. doi: https://doi.org/10.7150/ijbs.7929

43. Wu J, Wu JJ, Yang LJ, et al. Rosiglitazone protects against palmitate-induced pancreatic beta-cell death by activation of autophagy via 5′-AMP-activated protein kinase modulation. Endocrine. 2013;44:87-98. doi: https://doi.org/10.1007/s12020-012-9826-5

44. Diaz A, Romero M, Vazquez T, et al. Metformin improves in vivo and in vitro B cell function in individuals with obesity and Type-2 Diabetes. Vaccine. 2017;35:2694-2700. doi: https://doi.org/10.1016/j.vaccine.2017.03.078

45. Janzen KM, Steuber TD, Nisly SA. GLP-1 Agonists in Type 1 Diabetes Mellitus. Ann Pharmacother. 2016;50:656-665. doi: https://doi.org/10.1177/1060028016651279

46. Wajchenberg BL. β-Cell Failure in Diabetes and Preservation by Clinical Treatment. Endocr Rev. 2007;28(2):187-218. doi: https://doi.org/10.1210/10.1210/er.2006-0038

47. Jones B, Buenaventura T, Kanda N, et al. Targeting GLP-1 receptor trafficking to improve agonist efficacy. Nat Commun. 2018;9(1):1602. doi: https://doi.org/10.1038/s41467-018-03941-2

48. Donnelly D. The structure and function of the glucagon-like peptide-1 receptor and its ligands. Br J Pharmacol. 2012;166:27-41. doi: https://doi.org/10.1111/j.1476-5381.2011.01687.x

49. Shyangdan DS, Royle P, Clar C, et al. Glucagon-like peptide analogues for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2011. doi: https://doi.org/10.1002/14651858.CD006423.pub2

50. Piya MK, Tahrani AA, Barnett AH. Emerging treatment options for type 2 diabetes. Br J Clin Pharmacol. 2010;70(5):631-644. doi: https://doi.org/10.1111/j.1365-2125.2010.03711.x

51. Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther. 2007;113:546-593. doi: https://doi.org/10.1016/j.pharmthera.2006.11.007

52. Lee Y-S, Jun H-S. Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control. Mediators Inflamm. 2016;2016:1-11. doi: https://doi.org/10.1155/2016/3094642.

53. Lee Y-S, Jun H-S. Anti-diabetic actions of glucagon-like peptide-1 on pancreatic beta-cells. Metabolism. 2014;63(1):9-19. doi: https://doi.org/10.1016/j.metabol.2013.09.010

54. Vilsbøll T. The effects of glucagon-like peptide-1 on the beta cell. Diabetes, Obes Metab. 2009;11:11-18. doi: https://doi.org/10.1111/j.1463-1326.2009.01073.x

55. Pratley RE, Nauck M, Bailey T, et al. Liraglutide versus sitagliptin for patients with type 2 diabetes who did not have adequate glycaemic control with metformin: a 26-week, randomised, parallel-group, open-label trial. Lancet. 2010;375:1447-1456. doi: https://doi.org/10.1016/S0140-6736(10)60307-8.

56. Bergenstal RM, Wysham C, MacConell L, et al. Efficacy and safety of exenatide once weekly versus sitagliptin or pioglitazone as an adjunct to metformin for treatment of type 2 diabetes (DURATION-2): A randomised trial. Lancet. 2010;376:431-439. doi: https://doi.org/10.1016/S0140-6736(10)60590-9.

57. Omar BA, Vikman J, Winzell MS, et al. Enhanced beta cell function and anti-inflammatory effect after chronic treatment with the dipeptidyl peptidase-4 inhibitor vildagliptin in an advanced-aged diet-induced obesity mouse model. Diabetologia. 2013;56(8):1752-1760. doi: https://doi.org/10.1007/s00125-013-2927-8

58. Yang L, Yuan J, Zhou Z. Emerging Roles of Dipeptidyl Peptidase 4 Inhibitors: Anti-Inflammatory and Immunomodulatory Effect and Its Application in Diabetes Mellitus. Can J Diabetes. 2014;38(6):473-479. doi: https://doi.org/10.1016/j.jcjd.2014.01.008

59. Tanemura M, Ohmura Y, Deguchi T, et al. Rapamycin causes upregulation of autophagy and impairs islets function both in vitro and in vivo. Am J Transplant. 2012;12:102-114. doi: https://doi.org/10.1111/j.1600-6143.2011.03771.x

60. Zhou Z, Wu S, Li X, et al. Rapamycin induces autophagy and exacerbates metabolism associated complications in a mouse model of type 1 diabetes. Indian J Exp Biol. 2010;48:31-38.

61. Chang G-R, Wu Y-Y, Chiu Y-S, et al. Long-term administration of rapamycin reduces adiposity, but impairs glucose tolerance in high-fat diet-fed KK/HlJ mice. Basic Clin Pharmacol Toxicol. 2009;105:188-198. doi: https://doi.org/10.1111/j.1742-7843.2009.00427.x

62. Chang G-R, Chiu Y-S, Wu Y-Y, et al. Rapamycin protects against high fat diet-induced obesity in C57BL/6J mice. J Pharmacol Sci. 2009;109:496-503. doi: https://doi.org/10.1254/jphs.08215fp.

63. Gong F-H, Ye Y-N, Li J-M, et al. Rapamycin-ameliorated diabetic symptoms involved in increasing adiponectin expression in diabetic mice on a high-fat diet. Kaohsiung J Med Sci. 2017;33:321-326. doi: https://doi.org/10.1016/j.kjms.2017.05.008

64. Reifsnyder PC, Flurkey K, Te A, Harrison DE. Rapamycin treatment benefits glucose metabolism in mouse models of type 2 diabetes. Aging (Albany NY). 2016;8:3120-3130. doi: https://doi.org/10.18632/aging.101117

65. Fang Y, Westbrook R, Hill C, et al. Duration of rapamycin treatment has differential effects on metabolism in mice. Cell Metab. 2013;17:456-462. doi: https://doi.org/10.1016/j.cmet.2013.02.008

66. Lupi R, Del Prato S. Beta-cell apoptosis in type 2 diabetes: quantitative and functional consequences. Diabetes Metab. 2008;34(S2):56-64. doi: https://doi.org/10.1016/S1262-3636(08)73396-2

67. Barlow AD, Nicholson ML, Herbert TP. Evidence for Rapamycin Toxicity in Pancreatic β-Cells and a Review of the Underlying Molecular Mechanisms. Diabetes. 2013;62:2674-2682. doi: https://doi.org/10.2337/db13-0106

68. Schindler CE, Partap U, Patchen BK, Swoap SJ. Chronic rapamycin treatment causes diabetes in male mice. Am J Physiol Regul Integr Comp Physiol. 2014;307:R434-43. doi: https://doi.org/10.1152/ajpregu.00123.2014.

69. Lamming DW, Ye L, Astle CM, et al. Young and old genetically heterogeneous HET3 mice on a rapamycin diet are glucose intolerant but insulin sensitive. Aging Cell. 2013;12:712-718. doi: https://doi.org/10.1111/acel.12097

70. Lamming DW, Ye L, Katajisto P, et al. Rapamycin-Induced Insulin Resistance Is Mediated by mTORC2 Loss and Uncoupled from Longevity. Science (80- ). 2012;335:1638-1643. doi: https://doi.org/10.1126/science.1215135

71. Okauchi S, Shimoda M, Obata A, et al. Protective effects of SGLT2 inhibitor luseogliflozin on pancreatic β-cells in obese type 2 diabetic db/db mice. Biochem Biophys Res Commun. 2016;470:772-782. doi: https://doi.org/10.1016/J.BBRC.2015.10.109

72. Lalloyer F, Vandewalle B, Percevault F, et al. Peroxisome proliferator-activated receptor α improves pancreatic adaptation to insulin resistance in obese mice and reduces lipotoxicity in human islets. Diabetes. 2006;55:1605-1613. doi: https://doi.org/10.2337/DB06-0016

73. Zhou J, Kang X, Luo Y, et al. Glibenclamide-Induced Autophagy Inhibits Its Insulin Secretion-Improving Function in β Cells. Int J Endocrinol. 2019;2019:1-8. doi: https://doi.org/10.1155/2019/1265175.

74. Ganesan K, Rana MBM, Sultan S. Oral Hypoglycemic Medications. StatPearls Publishing; 2020.

75. Bugliani M, Mossuto S, Grano F, et al. Modulation of Autophagy Influences the Function and Survival of Human Pancreatic Beta Cells Under Endoplasmic Reticulum Stress Conditions and in Type 2 Diabetes. Front Endocrinol (Lausanne). 2019;10. doi: https://doi.org/10.3389/fendo.2019.00052

76. Chen Z, Li Y-B, Han J, et al. The double-edged effect of autophagy in pancreatic beta cells and diabetes. Autophagy. 2011;7:12-16. doi: https://doi.org/10.4161/auto.7.1.13607

77. Capozzi ME, DiMarchi RD, Tschöp MH, et al. Targeting the Incretin/Glucagon System With Triagonists to Treat Diabetes. Endocr Rev. 2018;39(5):719-738. doi: https://doi.org/10.1210/er.2018-00117

78. Churchill AJ, Gutiérrez GD, Singer RA, et al. Genetic evidence that Nkx2.2 acts primarily downstream of Neurog3 in pancreatic endocrine lineage development. Elife. 2017;6. doi: https://doi.org/10.7554/eLife.20010

79. Zhu Y, Liu Q, Zhou Z, Ikeda Y. PDX1, Neurogenin-3, and MAFA: critical transcription regulators for beta cell development and regeneration. Stem Cell Res Ther. 2017;8(1):240. doi: https://doi.org/10.1186/s13287-017-0694-z

80. Donelan W, Li S, Wang H, et al. Pancreatic and duodenal homeobox gene 1 (Pdx1) down-regulates hepatic transcription factor 1 alpha (hnf1α) expression during reprogramming of human hepatic cells into insulin-producing cells. Am J Transl Res. 2015;7(6):995-1008.


Дополнительные файлы

1. Figure 1. Autophagy’s role in maintaining Beta-cell mass and function through resolving the oxidative stress, endoplasmic reticulum (ER) stress, and reducing pro-insulin degradation (these functions indicated by asterisks).
Тема
Тип Исследовательские инструменты
Посмотреть (390KB)    
Метаданные ▾

Рецензия

Для цитирования:


Marzoog B.А., Vlasova T.I. Beta-cell autophagy under the scope of hypoglycemic drugs; possible mechanism as a novel therapeutic target. Ожирение и метаболизм. 2021;18(4):465-470. https://doi.org/10.14341/omet12778

For citation:


Marzoog B.A., Vlasova T.I. Beta-cell autophagy under the scope of hypoglycemic drugs; possible mechanism as a novel therapeutic target. Obesity and metabolism. 2021;18(4):465-470. https://doi.org/10.14341/omet12778

Просмотров: 1521


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)