Preview

Obesity and metabolism

Advanced search

Evaluation of the metabolism properties of choline kinase alpha in neoplasms of the parathyroid glands. A pilot study

https://doi.org/10.14341/omet10260

Abstract

BACKGROUND: Primary hyperparathyroidism (PHPT) is a widespread endocrine disease characterized by excessive production of parathyroid hormone (PTH) due to parathyroid gland hyperplasia (PGH) or tumor lesions (adenoma or cancer of the parathyroid gland (PG) in 80% and 1–5% of cases respectively). Choline kinase α–alpha (XKα) overexpression is described in tumors of different localization, but there is no data on its expression in PG tumors.


AIMS: To study the character of XKα expression in PG neoplasms and its relationship with clinical, laboratory, and visualization characteristics (positron emission tomography combined with computed tomography (PET/CT) with 18F–fluorocholine (18F–FC)).


MATERIALS AND METHODS: The material for the study was based on tissue samples from 10 patients of 34–70 years old (Me = 61.5; [48; 66]), with a laboratory–confirmed diagnosis of PHT. An immunohistochemical study (IHC) was carried out on materials from 2 patients with hyperplasia of the main cells, from 5 patients with adenoma of PG, from 1 patient with atypical adenoma and 1 with carcinoma of PG; in 1 case the metastasis of cancer of the neck with lymph node was examined.


RESULTS: The expression of XKα is spotted in all types of PG cells (chief cells: active and inactive forms), transitional forms between the chief cells and oxyphil; oxyphil cells, but it was most intense in active chief cells. The expression of XKα was observed in neoplasms of PG of various degrees of malignancy. In the most numerous group of PG formations with a favorable prognosis (11 samples from 7 patients), no statistically significant correlation (p> 0.05) was obtained between the intensity expression of the XKα, of the PTH and the proliferative activity index Ki–67, the level of radiopharmaceutical accumulation in PET/CT with 18F–FC (SUVmax) and laboratory data (PTH, Ca, Ca++).


CONCLUSIONS: In the majority of investigated cases, moderate and intensive expression of the XKα was detected in PG cells. A small amount of studied cases does not allow us to identify the connection between the intensity of XKα expression and the malignant potential for the formation of PG.

About the Authors

Natalia G. Mokrysheva
Endocrinology Research Centre
Russian Federation

MD, PhD



Iya A. Voronkova
Endocrinology Research Centre; Moscows regional research clinical institute n.a. M.F. Vladimirskiy
Russian Federation

MD, PhD



Julia A. Krupinova
Endocrinology Research Centre
Russian Federation

MD



Mikhail B. Dolgushin
Blokhin Russian Cancer Research Center
Russian Federation

MD, PhD, Professor



Larisa E. Gurevch
Moscows regional research clinical institute n.a. M.F. Vladimirskiy
Russian Federation

PhD, Professor



Akgul A. Odzharova
Blokhin Russian Cancer Research Center
Russian Federation

MD, PhD



Sergey N. Kuznetsov
Endocrinology Research Centre
Russian Federation

MD, PhD



Irina V. Kryukova
Moscows regional research clinical institute n.a. M.F. Vladimirskiy
Russian Federation

MD, PhD, Assistant Professor



References

1. Favia G, Lumachi F, Polistina F, D’Amico DF. Parathyroid Carcinoma: Sixteen New Cases and Suggestions for Correct Management. World J Surg. 1998;22(12):1225-1230. DOI:10.1007/s002689900549

2. Shane E. Parathyroid Carcinoma. J Clin Endocrinol Metab. 2001;86(2):485-493. DOI:10.1210/jcem.86.2.7207

3. Lee PK, Jarosek SL, Virnig BA, et al. Trends in the incidence and treatment of parathyroid cancer in the United States. Cancer. 2007;109(9):1736-1741. DOI:10.1002/cncr.22599

4. Wittenberg J, Kornberg A. Choline phosphokinase. J Biol Chem. 1953;202(1):431-444. PMID: 13061469

5. Gibellini F, Smith TK. The Kennedy pathway-De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life. 2010;62(6):414-428. DOI:10.1002/iub.337

6. Zeisel SH. Dietary Choline: Biochemistry, Physiology, and Pharmacology. Daya S, ed. Annu Rev Nutr. 1981;1(1):95-121. DOI:10.1146/annurev.nu.01.070181.000523

7. Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant transformation. Daya S, ed. Nat Rev Cancer. 2011;11(12):835-848. DOI:10.1038/nrc3162

8. Патент РФ на изобретение № ٢٥٠٩٨٠٩/ ٢٠.٠٣.٢٠١٤ Бюл. № 8. Лакаль Акаль Санхуан Хуан Карлос, Рамирес де Молина Ана, Галлего Ортега Давид. Способы лечения и диагностики рака. [Patent RUS №2509809/ 20.03.2014. Byul. №8. Lakal’ Akal’ Sankhuan Khuan Karlos, Ramires de Molina Ana, Gallego Ortega David. Sposoby lecheniya i diagnostiki raka (In Russ)]. Доступно по http://www.fips.ru/cdfi/fips.dll/ru?ty=29&docid=2509809 Ссылка активна на 17.06.2019.

9. HGNC [Internet]. HUGO Gene Nomenclature Committee. The resource for approved human gene nomenclature. [Last updated: 2019-06-16]. Available from: https://www.genenames.org/

10. Ramírez de Molina A, Rodríguez-González A, Penalva V, et al. Inhibition of ChoK Is an Efficient Antitumor Strategy for Harvey-, Kirsten-, and N-ras-Transformed Cells. Biochem Biophys Res Commun. 2001;285(4):873-879. DOI:10.1006/bbrc.2001.5250

11. Ramírez de Molina A, Gallego-Ortega D, Sarmentero-Estrada J, et al. Choline kinase as a link connecting phospholipid metabolism and cell cycle regulation: Implications in cancer therapy. Int J Biochem Cell Biol. 2008;40(9):1753-1763. DOI:10.1016/j.biocel.2008.01.013

12. Challapalli A, Trousil S, Hazell S, et al. Exploiting altered patterns of choline kinase-alpha expression on human prostate tissue to prognosticate prostate cancer. J Clin Pathol. 2015;68(9):703-709. DOI:10.1136/jclinpath-2015-202859

13. Aboagye EO, Bhujwalla ZM. Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res. 1999;59(1):80-84. PMID: 9892190

14. Hu L, Wang R-Y, Cai J, et al. Overexpression of CHKA contributes to tumor progression and metastasis and predicts poor prognosis in colorectal carcinoma. Oncotarget. 2016;7(41):703-709. DOI:10.18632/oncotarget.11433

15. Lacal JC. Choline kinase: a novel target for antitumor drugs. IDrugs. 2001;4(4):419-426. PMID: 16015482

16. Mazarico JM, Sanchez-Arevalo Lobo VJ, Favicchio R, et al. Choline Kinase Alpha (CHK ) as a Therapeutic Target in Pancreatic Ductal Adenocarcinoma: Expression, Predictive Value, and Sensitivity to Inhibitors. Mol Cancer Ther. 2016;15(2):323-333. DOI:10.1158/1535-7163.MCT-15-0214

17. Quak E, Lheureux S, Reznik Y, et al. F18-Choline, a Novel PET Tracer for Parathyroid Adenoma? J Clin Endocrinol Metab. 2013;98(8):3111-3112. DOI:10.1210/jc.2013-2084

18. Hodolic M, Huchet V, Balogova S, et al. Incidental uptake of 18F-fluorocholine (FCH) in the head or in the neck of patients with prostate cancer. Radiol Oncol. 2014;48(3):228-234. DOI:10.2478/raon-2013-0075

19. Cazaentre T, Clivaz F, Triponez F. False-Positive Result in 18F-Fluorocholine PET/CT Due to Incidental and Ectopic Parathyroid Hyperplasia. Clin Nucl Med. 2014;36(6):e328-e330. DOI:10.1097/RLU.0b013e3182a77b62

20. Мокрышева Н.Г., Крупинова Ю.А., Долгушин М.Б., и др. Позитронная эмиссионная томография, совмещенная с компьютерной томографией с 18F- фторхолином в топической диагностике опухолей околощитовидных желез и вторичных изменений костной ткани при гиперпаратиреоидной остеодистрофии. Два клинических наблюдения // Проблемы эндокринологии. — 2018. — Т.64. — №5. — С.299-306. [Mokrysheva NG, Krupinova JA, Dolgushin MB, et al. Positron emission tomography in combination with computed tomography with 18F-fluorocholine in the topical diagnosis of parathyroid tumors and secondary changes in bone tissue associated with hyperparathyroid osteodystrophy: two case studies. Problems of Endocrinology. 2018;64(5):299–306. (In Russ).] doi: http://doi.org/10.14341/probl9548

21. Gallego-Ortega D, Ramirez De Molina A, Gutierrez R, et al. Generation and characterization of monoclonal antibodies against choline kinase α and their potential use as diagnostic tools in cancer. Int J Oncol. 2006;109(9):1736-1741. DOI:10.3892/ijo.29.2.335

22. Ramírez de Molina A, Gutiérrez R, Ramos MA, et al. Increased choline kinase activity in human breast carcinomas: clinical evidence for a potential novel antitumor strategy. Oncogene. 2002;21(27):4317-4322. DOI:10.1038/sj.onc.1205556

23. Zhang L, Chen P, Yang S, et al. CHKA mediates the poor prognosis of lung adenocarcinoma and acts as a prognostic indicator. Oncol Lett. 2016;12(3):1849-1853. DOI:10.3892/ol.2016.4810

24. Silva-Figueroa A, Villalobos P, Williams MD, et al. Characterizing parathyroid carcinomas and atypical neoplasms based on the expression of programmed death-ligand 1 expression and the presence of tumor-infiltrating lymphocytes and macrophages. Surgery. 2018;164(5):960-964. DOI:10.1016/j.surg.2018.06.013

25. Contractor K, Challapalli A, Barwick T, et al. Use of [11C]Choline PET-CT as a Noninvasive Method for Detecting Pelvic Lymph Node Status from Prostate Cancer and Relationship with Choline Kinase Expression. Clin Cancer Res. 2011;17(24):7673-7683. DOI:10.1158/1078-0432.CCR-11-2048

26. Kwee SA, Okimoto GS, Chan OT, et al. Metabolic characteristics distinguishing intrahepatic cholangiocarcinoma: a negative pilot study of (18)F-fluorocholine PET/CT clarified by transcriptomic analysis. Am J Nucl Med Mol Imaging. 2016;6(1):73-83.

27. Mihai R. The Calcium Sensing Receptor: From Understanding Parathyroid Calcium Homeostasis to Bone Metastases. Ann R Coll Surg Engl. 2008;90(4):271-277. DOI:10.1308/003588408X286044

28. Haglund F, Juhlin CC, Kiss NB, et al. Diffuse PTH expression in parathyroid tumors argues against important functional tumor subclones. Eur J Endocrinol. 2016;174(5):583-590. DOI:10.1530/EJE-15-1062

29. Gillies RJ, Raghunand N, Karczmar GS, Bhujwalla ZM. MRI of the tumor microenvironment. J Magn Reson Imaging. 2002;16(4):430-450. DOI:10.1002/jmri.10181


Supplementary files

1. Figure 1. Expression of choline kinase alpha (XKα) in different cell pools in a single tissue sample.
Subject
Type Other
View (886KB)    
Indexing metadata
2. Figure 2. Distribution of choline kinase alpha expression in scores depending on the type of cells of the thyroid formations.
Subject
Type Other
View (67KB)    
Indexing metadata
3. Figure 3. Distribution of choline kinase alpha expression in points according to the prevailing expression (in points) in cells depending on the degree of malignancy of parathyroid gland formations.
Subject
Type Other
View (81KB)    
Indexing metadata
4. Figure 4. Expression of choline kinase alpha (XKα) in parathyroid neoplasms of varying degrees of malignancy.
Subject
Type Other
View (761KB)    
Indexing metadata
5. Figure 5. Expressed (3+) expression of choline kinase alpha in the tissue of the parathyroid adenoma and very intense (4+) in individual cells of the perivascular zone (× 200).
Subject
Type Other
View (187KB)    
Indexing metadata
6. Figure 6. Adenoma of the parathyroid glands (case No. 5)
Subject
Type Other
View (550KB)    
Indexing metadata

Review

For citations:


Mokrysheva N.G., Voronkova I.A., Krupinova J.A., Dolgushin M.B., Gurevch L.E., Odzharova A.A., Kuznetsov S.N., Kryukova I.V. Evaluation of the metabolism properties of choline kinase alpha in neoplasms of the parathyroid glands. A pilot study. Obesity and metabolism. 2019;16(3):94-103. (In Russ.) https://doi.org/10.14341/omet10260

Views: 634


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)