Genetic predictors of obesity development
Abstract
The most common reasons that cause obesity are eating disorders (overeating), genetic predisposition, sedentary lifestyle (lack of exercise), disorders of the endocrine system, and environmental factors. There is evidence of an obvious relationship of high consumption of sugary drinks and weight gain. Since 1990, there has been considerable growth in the number of obese people in the first place associated with the promotion of soft drinks. According to a study in Finnish diabetes prevention average physical activity and change of diet (1200-1800 kcal) of total fat intake with less than 30% saturated fat, including less than 10%, leading to long-term loss of excess weight (within 4 years). Many studies have demonstrated the impossibility of a single template approach to the determination of optimal diets for patients with overweight and obesity which has been shown in various studies on gene polymorphisms are associated with obesity, and their interaction. This article provides an overview of current data on the genetics of obesity covering the main provisions of the study of candidate genes, such as PPARG, FABP2, ADRB 2, ADRB3. The role nutrigenetics in the creation of individual programs of weight control and weight loss. But the question of the direct role of genetic factors in the development of obesity remains controversial, since one can not ignore the impact of environmental factors, such as lifestyle, diet, physical activity, stress, and harmful habits. To understand the mechanism of the relationship between genetic factors, environmental factors, and obesity, one needs to carry out research not only on the population level, but also in certain groups of people (ethnic, racial, age).
About the Authors
Svetlana V. BorodinaRussian Federation
MD, PhD
Competing Interests:
No conflict of interest
Kamila M. Gapparova
Russian Federation
MD,PhD
Competing Interests:
No conflict of interest
Zainudin M. Zainudiniv
Russian Federation
MD,PhD
Competing Interests:
No conflict of interest
Olga N. Grigorian
Russian Federation
MD, PhD
Competing Interests:
No conflict of interest
References
1. Ожирение и избыточный вес. Информационный бюллетень ВОЗ. №311. май 2014 г. http://www.who.int/mediacentre/factsheets/fs311/ru/. Ссылка активна на 29.06.2016. [Obesity and overweight. Fact sheet. Updated June 2016. WHO Media centre. Available on: http://www.who.int/mediacentre/factsheets/fs311/en/]
2. Centers for Disease Control and Prevention (CDC). Trends in intake of energy and macronutrients-United States, 1971- 2000. MMWR Morb Mortal Wkly Rep. 2004; 53(04):80-82
3. Bahadoran Z, Mirmiran P, Hosseini-Esfahani F, Azizi F. Fast food consumption and the risk of metabolic syndrome after 3-years of follow-up: Tehran Lipid and Glucose Study. European Journal of Clinical Nutrition. 2013;67(12):1303-9. doi:10.1038/ejcn.2013.217
4. Duffey KJ, Gordon-Larsen P, Jacobs DR, et al. Differential associations of fast food and restaurant food consumption with 3-y change in body mass index: the Coronary Artery Risk Development in Young Adults Study. The American Journal of Clinical Nutrition. 2007;85(1):201-8.
5. Jaworowska A, Blackham T, Davies IG, Stevenson L. Nutritional challenges and health implications of takeaway and fast food. Nutrition Reviews. 2013;71(5):310-8. doi:10.1111/nure.12031
6. Flores-Mateo G, Rojas-Rueda D, Basora J, Ros E, Salas-Salvado J. Nut intake and adiposity: meta-analysis of clinical trials. American Journal of Clinical Nutrition. 2013;97(6):1346-55. doi:10.3945/ajcn.111.031484
7. Martínez-González MA, Bes-Rastrollo M. Nut consumption, weight gain and obesity: Epidemiological evidence. Nutrition, Metabolism and Cardiovascular Diseases. 2011;21:S40-S5. doi:10.1016/j.numecd.2010.11.005
8. He K, Hu FB, Colditz GA, et al. Changes in intake of fruits and vegetables in relation to risk of obesity and weight gain among middle-aged women. International Journal of Obesity. 2004;28(12):1569-74. doi:10.1038/sj.ijo.0802795
9. Boeing H, Bechthold A, Bub A, et al. Critical review: vegetables and fruit in the prevention of chronic diseases. European Journal of Nutrition. 2012;51(6):637-63. doi:10.1007/s00394-012-0380-y
10. Schulze MB, Manson JE, Ludwig DS, et al. Sugar-Sweetened beverages, Weight Gain, and Incidence of Type 2 Diabetes in Young and Middle-Aged Women. JAMA. 2004;292(8):927. doi:10.1001/jama.292.8.927
11. Mozaffarian D, Hao T, Rimm EB, et al. Changes in Diet and Lifestyle and Long-Term Weight Gain in Women and Men. N Engl J Med. 2011;364(25):2392-404. doi:10.1056/NEJMoa1014296
12. Unick JL, Beavers D, Bond DS, et al. The Long-term Effectiveness of a Lifestyle Intervention in Severely Obese Individuals. The American Journal of Medicine. 2013;126(3):236-42.e2. doi:10.1016/j.amjmed.2012.10.010.
13. Kaisari P, Yannakoulia M, Panagiotakos DB. Eating Frequency and Overweight and Obesity in Children and Adolescents: A Meta-analysis. Pediatrics. 2013;131(5):958-67. doi:10.1542/peds.2012-3241
14. Odegaard AO, Jacobs DR, Steffen LM, Van Horn L, Ludwig DS, Pereira MA. Breakfast Frequency and Development of Metabolic Risk. Diabetes Care. 2013;36(10):3100-6. doi:10.2337/dc13-0316
15. Steinle NI, Hsueh WC, Snitker S, et al. Eating behavior in the Old Order Amish: heritability analysis and a genome-wide linkage analysis. Am J Clin Nutr. 2002;75:1098–106.
16. Hasselbalch AL, Silventoinen K, Keskitalo K, et al. Twin Study of Heritability of Eating Bread in Danish and Finnish Men and Women. Twin Research and Human Genetics. 2012;13(02):163-7. doi:10.1375/twin.13.2.163
17. Rankinen T, Bouchard C. Genetics of Food Intake and Eating Behavior Phenotypes in Humans. Annual Review of Nutrition. 2006;26(1):413-34. doi:10.1146/annurev.nutr.26.061505.111218
18. Chu AY, Workalemahu T, Paynter NP, et al. Novel locus including FGF21 is associated with dietary macronutrient intake. Human Molecular Genetics. 2013;22(9):1895-902. doi:10.1093/hmg/ddt032
19. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults--The Evidence Report. National Institutes of Health. Obes Res. 1998;6 Suppl 2:51S-209S.
20. Benoit G, Malewicz M, Perlmann T. Digging deep into the pockets of orphan nuclear receptors: insights from structural studies. Trends in Cell Biology. 2004;14(7):369-76. doi:10.1016/j.tcb.2004.05.007.
21. Berkenstam A, Gustafsson J-Å. Nuclear receptors and their relevance to diseases related to lipid metabolism. Current Opinion in Pharmacology. 2005;5(2):171-176. doi:10.1016/j.coph.2005.01.003
22. Lee K. Transactivation of peroxisome proliferator-activated receptor α by green tea extracts. J. Vet. Sci. (2004);5(4), 325–330
23. Milburn MV, Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, et al. Nature. 1998;395(6698):137-43. doi:10.1038/25931
24. Zhu Y, Kan L, Qi C., et al. Isolation and Characterization of Peroxisome Proliferator-activated Receptor (PPAR) Interacting Protein (PRIP) as a Coactivator for PPAR. J. Biol. Chem. 2000;275(18):13510-6. doi:10.1074/jbc.275.18.13510
25. Lindi V, Sivenius K, Niskanen L, Laakso M, Uusitupa MI. Effect of the Pro12Ala polymorphism of the PPAR-gamma2 gene on long-term weight change in Finnish non-diabetic subjects. Diabetologia. 2001;44(7):925-6. PMID: 11508283.
26. Vogels N, Mariman Ec, Bouwman Fg, et al. Relation of weight maintenance and dietary restraint to peroxisome proliferator-activated receptor gamma2, glucocorticoid receptor, and ciliary neurotrophic factor polymorphisms. Am J Clin Nutr. 2005;82:740-6.
27. Frederiksen L, Brodbaek K, Fenger M, et al. Comment: studies of the Pro12Ala polymorphism of the PPAR-gamma gene in the Danish MONICA cohort: homozygosity of the Ala allele confers a decreased risk of the insulin resistance syndrome. JCEM. 2002;87(8):3989-92. doi:10.1210/jcem.87.8.8732.
28. Бирюкова Е.В. Молекулярно-генетические, гормонально-метаболические и клинические аспекты метаболического синдрома: Дисс. ... док. мед. наук. Москва. – 2009. [Biryukova EV. Molekulyarno-geneticheskie, gormonal'no-metabolicheskie i klinicheskie aspekty metabolicheskogo sindroma: [dissertation] Moscow; 2009.(In Russ).] Доступно по: http://www.dissercat.com/content/molekulyarno-geneticheskie-gormonalno-metabolicheskie-i-klinicheskie-aspekty-metabolicheskog. Ссылка активна на 26.06.2014
29. Meirhaeghe A, Cottel D, Amouyel P, Dallongeville J. Association Between Peroxisome Proliferator-Activated Receptor Haplotypes and the Metabolic Syndrome in French Men and Women. Diabetes. 2005;54(10):3043-8. doi:10.2337/diabetes.54.10.3043
30. Dirlewanger M, Schneiter P, Jéquier E, Tappy L. Effects of fructose on hepatic glucose metabolism in humans. American Journal of Physiology - Endocrinology and Metabolism. 2000;279(4):E907-E11.
31. Iwata E, Yamamoto I, Motomura T, et al. The association of Pro12Ala polymorphism in PPARγ2 with lower carotid artery IMT in Japanese. Diabetes Research and Clinical Practice. 2003;62(1):55-9. doi:10.1016/s0168-8227(03)00161-x.
32. Bhanushali AA, Das BR. Influence of genetic variants in the apolipoprotein A5 and C3 gene on lipids, lipoproteins, and its association with coronary artery disease in Indians. Journal of Community Genetics. 2010;1(3):139-48. doi:10.1007/s12687-010-0025-x.
33. Tai ES, Corella D, Deurenberg-Yap M, et al. Differential effects of the C1431T and Pro12Ala PPAR gene variants on plasma lipids and diabetes risk in an Asian population. The Journal of Lipid Research. 2004;45(4):674-85. doi:10.1194/jlr.M300363-JLR200
34. Frederiksen L, Brødbæk K, Fenger M, et al. Studies of the Pro12Ala Polymorphism of the PPAR-γ Gene in the Danish MONICA Cohort: Homozygosity of the Ala Allele Confers a Decreased Risk of the Insulin Resistance Syndrome. JCEM. 2002;87(8):3989-92. doi:10.1210/jcem.87.8.8732
35. Hamada T, Kotani K, Tsuzaki K, et al. Association of Pro12Ala polymorphism in the peroxisome proliferator–activated receptor γ2 gene with small dense low-density lipoprotein in the general population. Metabolism. 2007;56(10):1345-9. doi:10.1016/j.metabol.2007.05.017
36. Stefański A, Majkowska L, Ciechanowicz A, et al. Association between the Pro12Ala variant of the peroxisome proliferator-activated receptor-gamma2 gene and increased 24-h diastolic blood pressure in obese patients with type II diabetes. Journal of Human Hypertension. 2006;20(9):684-92. doi:10.1038/sj.jhh.1002040
37. Wu Z, Lou Y, Jin W, et al. The Pro12Ala Polymorphism in the Peroxisome Proliferator-Activated Receptor Gamma-2 Gene (PPARγ2) Is Associated with Increased Risk of Coronary Artery Disease: A Meta-Analysis. PLoS ONE. 2012;7(12):e53105. doi:10.1371/journal.pone.0053105
38. Pischon T, Pai JK, Manson JE, et al. Peroxisome Proliferator-Activated Receptor- 2 P12A Polymorphism and Risk of Coronary Heart Disease in US Men and Women. Arteriosclerosis, Thrombosis, and Vascular Biology. 2005;25(8):1654-8. doi:10.1161/01.ATV.0000171993.78135.7e
39. Braissant O, Foufelle F, Scotto C, et al. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology. 1996;137(1):354-66. doi:10.1210/endo.137.1.8536636
40. Zhao T, Nzekebaloudou M, lv J. Ala54Thr polymorphism of fatty acid-binding protein 2 gene and fasting blood lipids: A meta-analysis. Atherosclerosis. 2010;210(2):461-7. doi:10.1016/j.atherosclerosis.2009.11.049
41. de Luis DA, Gonzalez Sagrado M, Aller R, et al. Metabolic syndrome and ALA54THR polymorphism of fatty acid–binding protein 2 in obese patients. Metabolism. 2011;60(5):664-8. doi:10.1016/j.metabol.2010.06.018
42. Feher Turkovic L, Pizent A, Dodig S, et al. FABP 2 gene polymorphism and metabolic syndrome in elderly people of Croatian descent. Biochemia Medica. 2012;22(2):217-24.
43. Oguri M, Kato K, Yokoi K, et al. Association of genetic variants with myocardial infarction in Japanese individuals with metabolic syndrome. Atherosclerosis. 2009;206(2):486-93. doi:10.1016/j.atherosclerosis.2009.02.037
44. McColley SP, Georgopoulos A, Young LR, et al. A high-fat diet and the threonine-encoding allele (Thr54) polymorphism of fatty acid–binding protein 2 reduce plasma triglyceride–rich lipoproteins. Nutrition Research. 2011;31(7):503-8. doi:10.1016/j.nutres.2011.06.003
45. Marin C, Perez-Jimenez F, Gomez P, et al. The Ala54Thr polymorphism of the fatty acid-binding protein 2 gene is associated with a change in insulin sensitivity after a change in the type of dietary fat. Am J Clin Nutr. 2005;82:196-200.
46. Dallongeville J, Helbecque N, Cottel D, et al. The Gly16→Arg16and Gln27→Glu27Polymorphisms of β2-Adrenergic Receptor Are Associated with Metabolic Syndrome in Men. The Journal of Clinical Endocrinology & Metabolism. 2003;88(10):4862-6. doi:10.1210/jc.2003-030173.
47. Coman О.А., Păunescu H., Ghiţă I., et al. Beta 3 adrenergic receptors: molecular, histological, functional and pharmacological approaches. Romanian Journal of Morphology and Embryology 2009; 50(2):169–179.
48. Proenza AM, Poissonnet CM, Ozata M, et al. Association of sets of alleles of genes encoding b3-adrenoreceptor, uncoupling protein 1 and lipoprotein lipase with increased risk of metabolic complications in obesity. Int J Obes Relat Metab Disord. 2000;24:93–100.
49. Clément K, Vaisse C, Manning BSJ, et al. Genetic Variation in the β3-Adrenergic Receptor and an Increased Capacity to Gain Weight in Patients with Morbid Obesity. N Engl J Med. 1995;333(6):352-4. doi:10.1056/nejm199508103330605
50. Allison DB, Heo M, Faith MS, Pietrobelli A. Meta-analysis of the association of the Trp64Arg polymorphism in the beta3-adrenergic receptor with body mass index. Int J Obes Relat Metab Disord. 1998;22:559–66.
51. Kurokawa N, Young EH, Oka Y, et al. The ADRB3 Trp64Arg variant and BMI: a meta-analysis of 44 833 individuals. Int J Obes. 2008;32(8):1240-9. doi:10.1038/ijo.2008.90
52. de Luis DA, Aller R, Izaola O, et al. Relation of Trp64Arg Polymorphism of Beta 3-Adrenergic Receptor Gene to Adipocytokines and Fat Distribution in Obese Patients. Annals of Nutrition and Metabolism. 2008;52(4):267-71. doi:10.1159/000144047
53. Groop LC. Insulin resistance: the fundamental trigger of type 2 diabetes. Diabetes, Obesity and Metabolism. 1999;1(s1):1-7. doi:10.1046/j.1463-1326.1999.0010s1001.x
54. Luke A, Durazo-Arvizu R, Rotimi C, et al. Relation between Body Mass Index and Body Fat in Black Population Samples from Nigeria, Jamaica, and the United States. American Journal of Epidemiology. 1997;145(7):620-8. doi:10.1093/oxfordjournals.aje.a009159
55. Kadowaki H, Yasuda K, Iwamoto K, et al. A Mutation in the β3-Adrenergic Receptor Gene Is Associated with Obesity and Hyperinsulinemia in Japanese Subjects. Biochemical and Biophysical Research Communications. 1995;215(2):555-60. doi:10.1006/bbrc.1995.2500
56. Yoshida T, Sakane N, Umekawa T, et al. Mutation of β3-adrenergic-receptor gene and response to treatment of obesity. The Lancet. 1995;346(8987):1433-4. doi:10.1016/s0140-6736(95)92452-3
57. Gagnon J, Mauriège P, Roy S, et al. The Trp64Arg mutation of the beta3 adrenergic receptor gene has no effect on obesity phenotypes in the Québec Family Study and Swedish Obese Subjects cohorts. Journal of Clinical Investigation. 1996;98(9):2086-93. doi:10.1172/jci119014
58. Awata T, Katayama S. Genetic Variation in the 3-Adrenergic Receptor in Japanese NIDDM Patients. Diabetes Care. 1996;19(3):271-2. doi:10.2337/diacare.19.3.271b
59. Ueda K, Tanizawa Y, Oota Y, et al. Prevalence of the Trp64Arg missense mutation of the β3-adrenergic receptor gene in Japanese subjects. Metabolism. 1997;46(2):199-202. doi:10.1016/s0026-0495(97)90302-4
Review
For citations:
Borodina S.V., Gapparova K.M., Zainudiniv Z.M., Grigorian O.N. Genetic predictors of obesity development. Obesity and metabolism. 2016;13(2):7-13. (In Russ.)