Preview

Obesity and metabolism

Advanced search

New biomarkers of bone remodelling regulation in patients with acromegaly and endogenous hypercortisolism

https://doi.org/10.14341/omet9447

Abstract

Background: Bone tissue is a non-classical endocrine organ, which produces at least two hormones: fibroblast growth factor 23 (FGF-23) and decarboxylated osteocalcin (OC). In addition to this, recent studies demonstrate that specific proteins involved in the paracrine regulation of bone remodelling can be measured in peripheral serum samples and may serve as additional biomarkers of bone metabolism.


Aims: to evaluate the serum levels of biomarkers related to endocrine and paracrine function of bone tissue in patients with Cushing’s disease (CD) and acromegaly.


Materials and methods: The study was conducted according to the cross-sectional case-control type. Fasting serum samples were taken between 8–10 a.m. from patients with CD, acromegaly and age-, sex- and BMI-matched healthy volunteers and stored at -40° C. Commercially available kits for enzyme-linked immunosorbent assay (ELISA) were used to determine the serum levels of FGF-23, co-factor (co-receptor) Klotho, cathepsin K, sclerostin, P1NP. Insulin-like growth factor-1 (IGF-1) was measured by the immunochemiluminescence assay, late-night (11 p.m.) salivary cortisol (LNSC) was evaluated using the electrochemiluminescence method. Non-parametric tests (the Kruskal-Wallis test and the Mann-Whitney test) were used to assess the differences between the groups of patients.


Results: The study includes 78 patients, (37.6 years old, 95% CI 34.75–40.46): 29 patients with CD (group 1), 22 – with acromegaly (group 2), and 27 healthy individuals (group 3), matched by sex, age and BMI (p = 0.432, 0.373 and 0.725 between groups, respectively). LNSC in patients with CD and IGF-1 in patients with acromegaly were significantly higher compared to the control group (p = 0.004 and p <0.001, respectively). In patients with acromegaly, a statistically significant increase in FGF-23 (1.13 (0.78;1.49) vs 0.78 (0.54;1.09)) and phosphorus (1.38 (1.24;1.52) vs 1.16 (1.12;1.29)) (p = 0.01 and p <0.001, respectively) was observed along with increased levels of bone remodelling markers. In patients with CD, bone formation markers were suppressed, but differences in the levels of other biomarkers could not be identified.


Conclusions: Acromegaly leads to hyperphosphatemia and increase in FGF-23, which is most likely due to the development of resistance to FGF-23, and the intensification of bone remodelling. With CD, another bone hormone, osteocalcin, is suppressed along with the suppression of P1NP.

About the Authors

Timur T. Tsoriev

Endocrinology Research Centre


Russian Federation

MD, postgraduate student



Zhanna E. Belaya

Endocrinology Research Centre


Russian Federation

Sc.D



Lyudmila Y. Rozhinskaya

Endocrinology Research Centre


Russian Federation

Sc.D., Professor



Galina A. Mel’nichenko

Endocrinology Research Centre


Russian Federation

Sc.D., Professor, Academician of the RAS



Aleksandr V. Ilyin

Endocrinology Research Centre


Russian Federation

MD


Competing Interests:

.



Larisa V. Nikankina

Endocrinology Research Centre


Russian Federation

PhD



Ivan I. Dedov

Endocrinology Research Centre


Russian Federation

, Sc.D., Professor, Academician of the RAS



References

1. Guntur AR, Rosen CJ. Bone as an endocrine organ. Endocr Pract. 2012;18(5):758-762. doi: 10.4158/EP12141.RA.

2. Schwetz V, Pieber T, Obermayer-Pietsch B. The endocrine role of the skeleton: background and clinical evidence. Eur J Endocrinol. 2012;166(6):959-967. doi: 10.1530/EJE-12-0030.

3. Гребенникова Т.А., Белая Ж.Е., Цориев Т.Т., и др. Эндокринная функция костной ткани. // Остеопороз и остеопатии. – 2015. – № 1. – С. 28-37. [Grebennikova TA, Belaya ZE, Tsoriev TT, et al. The endocrine function of the bone tissue. Osteoporoz i osteopatii. 2015;(1):28-37. (In Russ.)]

4. Gattineni J, Bates C, Twombley K, et al. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol. 2009;297(2):F282-291. doi: 10.1152/ajprenal.90742.2008.

5. Shimada T, Hasegawa H, Yamazaki Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19(3):429-435. doi: 10.1359/JBMR.0301264.

6. Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444(7120):770-774. doi: 10.1038/nature05315.

7. Nabeshima Y, Imura H. α-Klotho: a regulator that integrates calcium homeostasis. Am J Nephrol. 2008;28(3):455-464. doi: 10.1159/000112824.

8. Chapurlat RD. Treatment of postmenopausal osteoporosis with odanacatib. Expert Opin Pharmacother. 2014;15(4):559-564. doi: 10.1517/14656566.2014.881470.

9. Цориев Т.Т., Гребенникова Т.А., Ильин А.В., и др. Уровень катепсина K у пациентов с болезнью Иценко-Кушинга как новый маркер активности остеокластов. В: Достижения персонализированной медицины сегодня – результат практического здравоохранения завтра: Сборник тезисов VII Всероссийского конгресса эндокринологов; март 2-5, 2016. Москва, Россия. М.: 2016. – С. 348. [Tsoriev TT, Grebennikova TA, Ilyin AV, et al. Uroven’ katepsina K u patsientov s boleznyu Itsenko-Kushinga kak novyy markyor aktivnosti osteoklastov. In: Dostizheniya personalizirovannoy meditsiny segodnya – rezul’tat prakticheskogo zdravookhraneniya zavtra: VII Russian Congress of Endocrinologists Abstract Book; 2016 Mar 2-5. Moscow, Russia. Moscow; 2016. p. 348. (In Russ.)]

10. Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest. 2006;116(5):1202-1209. doi: 10.1172/JCI28551.

11. Glass DA II, Bialek P, Ahn JD, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8(5):751-764. doi: 10.1016/j.devcel.2005.02.017.

12. Драгунова Н.В., Белая Ж.Е., Рожинская Л.Я. Состояние костно-мышечной системы при эндогенном гиперкортицизме. // Остеопороз и остеопатии. – 2012. – № 3. – С. 18-24. [Dragunova NV, Belaya ZE, Rozhinskaya LY. Musculoskeletal system in the endogenous hypercortisolism. Osteoporoz i osteopatii. 2012;(3):18-24. (In Russ.)]

13. Потешкин Ю.Е., Пронин В.С., Мельниченко Г.А., и др. Влияние избытка гормона роста и ИФР-1 на костно-суставную систему при акромегалии. // Актуальная эндокринология. – 2015. [Poteshkin YE, Pronin VS, Mel’nichenko GA, et al. Growth hormone and IGF-1 effects on articular and skeletal system in acromegaly. Aktual’naya Endokrinologiya (Relev Endocrinol). 2015. (In Russ.)] doi: 10.18508/endo3539. Доступно по: http://actendocrinology.ru/archives/3539. Ссылка активна на 04.11.2017.

14. Bianda T, Hussain MA, Glatz Y, et al. Effects of short-term insulin-like growth factor-I or growth hormone treatment on bone turnover, renal phosphate reabsorption and 1,25 dihydroxyvitamin D3 production in healthy man. J Intern Med. 1997;241(2):143-150. doi: 10.1046/j.1365-2796.1997.94101000.x.

15. Sze L, Bernays RL, Zwimpfer C, et al. Excessively high soluble Klotho in patients with acromegaly. J Intern Med. 2012;272(1):93-97. doi: 10.1111/j.1365-2796.2012.02542.x.

16. Neidert MC, Sze L, Zwimpfer C, et al. Soluble α-Klotho: a novel serum biomarker for the activity of GH-producing pituitary adenomas. Eur J Endocrinol. 2013;168(4):575-583. doi: 10.1530/EJE-12-1045.

17. Ito N, Fukumoto S, Taguchi M, et al. Fibroblast growth factor (FGF)23 in patients with acromegaly. Endocr J. 2007;54(3):481-484. doi: 10.1507/endocrj.K06-217.

18. Schmid C, Neidert MC, Tschopp O, et al. Growth hormone and Klotho. J Endocrinol. 2013;219(2):R37-57. doi: 10.1530/JOE-13-0285.

19. Lau WL, Leaf EM, Hu MC, et al. Vitamin D receptor agonists increase Klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int. 2012;82(12):1261-1270. doi: 10.1038/ki.2012.322.

20. Belaya ZE, Rozhinskaya LY, Melnichenko GA, et al. Serum extracellular secreted antagonists of the canonical Wnt/β-catenin signaling pathway in patients with Cushing's syndrome. Osteoporos Int. 2013;24(8):2191-2199. doi: 10.1007/s00198-013-2268-y.

21. van Lierop AH, van der Eerden AW, Hamdy NA, et al. Circulating sclerostin levels are decreased in patients with endogenous hypercortisolism and increase after treatment. J Clin Endocrinol Metab. 2012;97(10):E1953-1957. doi: 10.1210/jc.2012-2218.


Supplementary files

1. Picture 1. FGF-23 levels in patients with Cushing's disease, acromegaly and healthy controls
Subject
Type Исследовательские инструменты
View (24KB)    
Indexing metadata ▾
2. Picture 2. Correlation between IGF-1 and FGF-23 levels in all persons involved in the study
Subject
Type Исследовательские инструменты
View (28KB)    
Indexing metadata ▾
3. Picture 3. Correlation between IGF-1 and phosphate levels in all persons involved in the study
Subject
Type Исследовательские инструменты
View (30KB)    
Indexing metadata ▾
4. Fig. 1. Levels of FGF23 in patients with Itsenko-Cushing's disease, acromegaly, and healthy individuals. In the group of patients with acromegaly there was a significant increase in FGF23 compared with patients with NIR and control group.
Subject
Type Исследовательские инструменты
View (35KB)    
Indexing metadata ▾
5. Fig. 2. Correlation dependence of the levels of IGF-1 and FGF23 in the total sample of study participants.
Subject
Type Исследовательские инструменты
View (81KB)    
Indexing metadata ▾
6. Fig. 3. Correlation dependence of the levels of IGF-1 and phosphorus in the total sample of study participants.
Subject
Type Исследовательские инструменты
View (98KB)    
Indexing metadata ▾

Review

For citations:


Tsoriev T.T., Belaya Zh.E., Rozhinskaya L.Y., Mel’nichenko G.A., Ilyin A.V., Nikankina L.V., Dedov I.I. New biomarkers of bone remodelling regulation in patients with acromegaly and endogenous hypercortisolism. Obesity and metabolism. 2018;15(3):33-41. (In Russ.) https://doi.org/10.14341/omet9447

Views: 1213


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)