Preview

Obesity and metabolism

Advanced search

Synthesis, activation and deactivation of glucocorticoids. The biological role of cortisol in metabolic disorders

https://doi.org/10.14341/omet2017248-52

Abstract

In the light of the emerging new data, the view of the hypothalamic-pituitary-adrenal-target organs system undergoes significant changes, and along with the negative feedback mechanism, there are suggestions of the existence of other regulatory mechanisms for synthesis, activation, and deactivation of glucocorticosteroids (GCS). However, there is currently a relatively small amount of data on the relationship between systemic and local cortisol production in tissues. The inconsistent increase in the number of patients with diabetes mellitus (predominantly type 2) and obesity poses new challenges in developing effective medicines and their delivery forms, Methods of timely detection and prevention of the development of the disease. Understanding these processes will create the necessary scientific basis for the search and development of new targets for the pharmacotherapy of diseases associated with a violation of synthesis, activation and action of GCS.

About the Author

Ekaterina V. Artemova

Endocrinology Research Centre


Russian Federation

MD



References

1. Rask E, Olsson T, Söderberg S, et al. Tissue-specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol Metab. 2001;86(3):1418-1421. doi:10.1210/jc.86.3.1418.

2. Rask E, Walker BR, Söderberg S, et al. Tissue-specific changes in peripheral cortisol metabolism in obese women: Increased adipose 11β-hydroxysteroid dehydrogenase type 1 activity. J Clin Endocrinol Metab. 2002;87(7):3330-3336. doi:10.1210/jc.87.7.3330.

3. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9:88. doi:10.1186/1471-2458-9-88.

4. Pereira CD, Azevedo I, Monteiro R, Martins MJ. 11β-Hydroxysteroid dehydrogenase type 1: relevance of its modulation in the pathophysiology of obesity, the metabolic syndrome and type 2 diabetes mellitus. Diabetes Obes Metab. 2012;14:869-881. doi:10.1111/j.1463-1326.2012.01582.x.

5. Morgan S a, McCabe EL, Gathercole LL, et al. 11β-HSD1 is the major regulator of the tissue-specific effects of circulating glucocorticoid excess. Proc Natl Acad Sci U S A. 2014;111(24):E2482-91. doi:10.1073/pnas.1323681111.

6. Bujalska IJ, Walker EA, Tomlinson JW, Hewison M, Stewart PM. 11Beta-hydroxysteroid dehydrogenase type 1 in differentiating omental human preadipocytes: from de-activation to generation of cortisol. Endocr Res. 2002;28(4):449-461. doi:10.1081/ERC-120016822.

7. Masuzaki H, Paterson J, Shinyama H, et al. A Transgenic Model of Visceral Obesity and the Metabolic Syndrome. Science (80-). 2001;294(5549):2166-2170. doi:10.1126/science.1066285.

8. Wamil M, Seckl JR. Inhibition of 11beta-hydroxysteroid dehydrogenase type 1 as a promising therapeutic target. Drug Discov Today. 2007;12(13-14):504-520. doi:10.1016/j.drudis.2007.06.001.

9. Joharapurkar A, Dhanesha N, Shah G, Kharul R, Jain M. 11β-Hydroxysteroid dehydrogenase type 1: potential therapeutic target for metabolic syndrome. Pharmacol Rep. 2012;64(5):1055-1065.

10. Colao A, Pivonello R, Spiezia S, et al. Persistence of increased cardiovascular risk in patients with Cushing’s disease after five years of successful cure. JClinEndocrinolMetab. 1999;84(0021-972X (Print)):2664-2672.

11. Sharma ST, Nieman LK, Feelders RA. Comorbidities in Cushing’s disease. Pituitary. 2015;18(2):188-194. doi:10.1007/s11102-015-0645-6.

12. Espinosa-de-Los-Monteros AL, Sosa E, Martinez N, Mercado M. Persistence of Cushing’s disease symptoms and comorbidities after surgical cure: a long-term, integral evaluation. Endocr Pract. 2013;19(2):252-258. doi:10.4158/EP12247.OR [doi].

13. Hirota K, Semenza GL. Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol. 2006;59(1):15-26. doi:10.1016/j.critrevonc.2005.12.003.

14. Webb JD, Coleman ML, Pugh CW. Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing. Cell Mol Life Sci. 2009;66(22):3539-3554. doi:10.1007/s00018-009-0147-7.

15. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn E a. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev. 2004;56(4):549-580. doi:10.1124/pr.56.4.3.549.

16. Holmes K, Roberts OL, Thomas AM, Cross MJ. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal. 2007;19(2007):2003-2012. doi:10.1016/j.cellsig.2007.05.013.

17. Oka T, Morita H, Komuro I. Novel molecular mechanisms and regeneration therapy for heart failure. J Mol Cell Cardiol. 2016;92:46-51. doi:10.1016/j.yjmcc.2016.01.028.

18. Matsuda S, Gomi F, Oshima Y, Tohyama M, Tano Y. Vascular endothelial growth factor reduced and connective tissue growth factor induced by triamcinolone in ARPE19 cells under oxidative stress. Invest Ophthalmol Vis Sci. 2005;46(3):1062-1068.

19. Rao R, Redha R, Macias-Perez I, et al. Prostaglandin E2-EP4 receptor promotes endothelial cell migration via ERK activation and angiogenesis in vivo. J Biol Chem. 2007;282(23):16959-16968. doi:10.1074/jbc.M701214200.

20. Logie JJ, Ali S, Marshall KM, Heck MMS, Walker BR, Hadoke PWF. Glucocorticoid-mediated inhibition of angiogenic changes in human endothelial cells is not caused by reductions in cell proliferation or migration. PLoS One. 2010;5(12). doi:10.1371/journal.pone.0014476.

21. Slominski A, Zbytek B, Nikolakis G, et al. Steroidogenesis in the skin: implications for local immune functions. J Steroid Biochem Mol Biol. 2013;137:107-123. doi:10.1016/j.jsbmb.2013.02.006.

22. Cirillo N, Prime SS. Keratinocytes synthesize and activate cortisol. J Cell Biochem. 2011;112(6):1499-1505. doi:10.1002/jcb.23081.

23. Slominski A, Wortsman J, Kohn L, et al. Expression of hypothalamic-pituitary-thyroid axis related genes in the human skin. J Invest Dermatol. 2002;119(6):1449-1455. doi:10.1046/j.1523-1747.2002.19617.x.

24. Jamora C, DasGupta R, Kocieniewski P, Fuchs E. Links between signal transduction, transcription and adhesion in epithelial bud development. Nature. 2003;422(6929):317-322. doi:10.1038/nature01893.

25. Slominski A, Malarkey WB, Wortsman J, Asa SL, Carlson A. Human skin expresses growth hormone but not the prolactin gene. J Lab Clin Med. 2000;136(6):476-481. doi:10.1067/mlc.2000.110605.

26. Kono M, Nagata H, Umemura S, Kawana S, Osamura RY. In situ expression of corticotropin-releasing hormone (CRH) and proopiomelanocortin (POMC) genes in human skin. FASEB J. 2001;15(12):2297-2299. doi:10.1096/fj.01-0254fje.

27. Kauser S, Slominski A, Wei ET, Tobin DJ. Modulation of the human hair follicle pigmentary unit by corticotropin-releasing hormone and urocortin peptides. FASEB J. 2006;20(7):882-895. doi:10.1096/fj.05-5257com.

28. Slominski AT, Manna PR, Tuckey RC. Cutaneous glucocorticosteroidogenesis: Securing local homeostasis and the skin integrity. Exp Dermatol. 2014;23(6):369-374. doi:10.1111/exd.12376.

29. Redvers RP, Li A, Kaur P. Side population in adult murine epidermis exhibits phenotypic and functional characteristics of keratinocyte stem cells. Proc Natl Acad Sci U S A. 2006;103(35):13168-13173. doi:10.1073/pnas.0602579103.

30. Vukelic S, Stojadinovic O, Pastar I, et al. Cortisol synthesis in epidermis is induced by IL-1 and tissue injury. J Biol Chem. 2011;286(12):10265-10275. doi:10.1074/jbc.M110.188268.

31. Pastar I, Stojadinovic O, Yin NC, et al. Epithelialization in Wound Healing: A Comprehensive Review. Adv wound care. 2014;3(7):445-464. doi:10.1089/wound.2013.0473.

32. Shi Y, Shu B, Yang R, et al. Wnt and Notch signaling pathway involved in wound healing by targeting c-Myc and Hes1 separately. Stem Cell Res Ther. 2015;6(1):120. doi:10.1186/s13287-015-0103-4.


Supplementary files

1. Рис.1 Конверсия кортизола в кортизон
Subject
Type Исследовательские инструменты
View (40KB)    
Indexing metadata ▾
2. Рис. 2 Электронная микрофотография адипоцитов
Subject
Type Исследовательские инструменты
View (138KB)    
Indexing metadata ▾
3. Рис. 3 Иммунофлюоресцентная микрофотография кератиноцитов
Subject
Type Исследовательские инструменты
View (169KB)    
Indexing metadata ▾

Review

For citations:


Artemova E.V. Synthesis, activation and deactivation of glucocorticoids. The biological role of cortisol in metabolic disorders. Obesity and metabolism. 2017;14(2):48-52. (In Russ.) https://doi.org/10.14341/omet2017248-52

Views: 11905


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)