Profile of microRNAs associated with coronary heart disease in patients with type 2 diabetes
https://doi.org/10.14341/omet2016434-38
Abstract
Introduction. Cardiovascular disease (CVD) remain the leading cause of death in industrialized countries. Patients with coronary heart disease (CHD) in combination with diabetes mellitus type 2 (T2DM) are characterized by more severe CHD and poor prognosis. Resent data indicate microRNAs (miRNAs) as important participants in the pathogenesis of various pathological conditions, including obesity, T2DM and CVD.
The aim of this study was to determine expression of miRNAs associated with the development of CHD, and transforming growth factor beta (TGF-β) in a patients with T2DM and obesity Materials and methods. 42 patients with 1-2 degrees obesity and diagnosed T2DM were divided into 2 groups. The first group with CHD, the second group - without CHD. 9 miRNAs were evaluated: miRNA-1, miRNA-21, miRNA-26a, m miRNA-27, miRNA-33a, miRNA-33b, miRNA-133a, miRNA-133b, miRNA-208.
Results and discussion. Significant differences were found in expression of miRNA-21, miRNA-26a, miRNA27a. An increased expression of miRNA-21, miRNA-27a was found in patients CHD while the expression of miRNA-26a was reduced in comparison with the group without CHD.
Conclusion. The results of this study may be an initial step for the detection of molecular basis in CHD pathogenesis in these patients by quantifying miRNA expression.
Introduction. Cardiovascular disease (CVD) remain the leading cause of death in industrialized countries. Patients with coronary heart
disease (CHD) in combination with diabetes mellitus type 2 (T2DM) are characterized by more severe CHD and poor prognosis. Resent data indicate microRNAs (miRNAs) as important participants in the pathogenesis of various pathological conditions, including obesity, T2DM and CVD.
The aim of this study was to determine expression of miRNAs associated with the development of CHD, and transforming growth factor beta (TGF-β) in a patients with T2DM and obesity Materials and methods. 42 patients with 1-2 degrees obesity and diagnosed T2DM were divided into 2 groups. The first group with CHD, the second group - without CHD. 9 miRNAs were evaluated: miRNA-1, miRNA-21, miRNA-26a, m miRNA-27, miRNA-33a, miRNA-33b, miRNA-133a, miRNA-133b, miRNA-208.
Results and discussion. Significant differences were found in expression of miRNA-21, miRNA-26a, miRNA27a. An increased expression of miRNA-21, miRNA-27a was found in patients CHD while the expression of miRNA-26a was reduced in comparison with the group without CHD.
Conclusion. The results of this study may be an initial step for the detection of molecular basis in CHD pathogenesis in these patients by quantifying miRNA expression.
About the Authors
Teona A ShvangiradzeRussian Federation
postgraduate student
Irina Z Bondarenko
Russian Federation
ScD
Ekaterina A Troshina
Russian Federation
ScD, prof., correspondence fellow of Russian Academy of Sciences
Marina V Shestakova
ScD, prof., academician of Russian Academy of Sciences
Alexander V Ilyin
Russian Federation
MD
Larisa V Nikankina
Russian Federation
PhD
Aleksandr V Karpukhin
Russian Federation
Sc.D., prof.
Tat'yana A Muzaffarova
Russian Federation
MD
Fatimat M Kipkeeva
Russian Federation
MD
Kristina A Grishina
Russian Federation
MD
Anna Yu Kuzevanova
Russian Federation
MD
References
1. Иванникова Е.В., Мелкозеров К.В., Калашников В.Ю., и др. Изучение роли факторов роста фибробластов (bFGF, TGFbeta1), маркеров воспаления (IL-6, TNF-alpha, СRP) и конечных продуктов гликирования (AGE, RAGE) у пациентов с ишемической болезнью сердца и сахарным диабетом 2 типа // Сахарный диабет. – 2013. – Т. 16. – №3 – C. 64-70. [Ivannikova EV, Melkozerov KV, Kalashnikov VYe, et al. bFGF and TGFβ1 growth factors, inflammatory markers (IL-6, TNF-α, CRP) and advanced glycation end-products (AGE, RAGE) in patients with ischemic heart disease and type 2 diabetes mellitus. Diabetes Mellitus. 2013(3):64-70 (in Russ)]. doi: 10.14341/2072-0351-819.
2. Obesity and overweight Fact sheet N°311 Available from: http://www.who.int/mediacentre/factsheets/fs311/ru/.
3. Sayed ASM, Xia K, Salma U, et al. Diagnosis, Prognosis and Therapeutic Role of Circulating miRNAs in Cardiovascular Diseases. Heart, Lung and Circulation. 2014;23(6):503-510. doi: 10.1016/j.hlc.2014.01.001.
4. Швангирадзе Т.А., Бондаренко И.З., Трошина Е.А., Шестакова М.В. МикроРНК в диагностике сердечно-сосудистых заболеваний, ассоциированных с сахарным диабетом 2-го типа и ожирением // Терапевтический архив. – 2016. – Т. 88. – № 10. – С. 87-92. Shvangiradze TA, Bondarenko IZ, Troshina EA, Shestakova MV. MiRNAs in the diagnosis of cardiovascular diseases associated with type 2 diabetes mellitus and obesity. Terapevticheskii arkhiv. 2016;88(10):87-92. doi: 10.17116/terarkh201688687-92.
5. Лапшина А.М. Хандаева П.М., Белая Ж.Е., и др. Роль микроРНК в онкогенезе опухолей гипофиза и их практическая значимость // Терапевтический архив. – 2016. – т. 88. – №. 8. – с. 115-120. Lapshina AM, Khandaeva PM, Belaya ZE, et al. Role of microRNA in oncogenesis of pituitary tumors and their practical significance. Terapevticheskii arkhiv. 2016;88(8):115-120. doi: 10.17116/terarkh2016888115-120.
6. Ding X-Q, Ge P-C, Liu Z, et al. Interaction between microRNA expression and classical risk factors in the risk of coronary heart disease. Scientific Reports. 2015;5:14925. doi: 10.1038/srep14925.
7. Nishiguchi T, Imanishi T, Akasaka T. MicroRNAs and Cardiovascular Diseases. BioMed Research International. 2015;2015:1-14. doi: 10.1155/2015/682857.
8. Fleissner F, Jazbutyte V, Fiedler J, et al. Short Communication: Asymmetric Dimethylarginine Impairs Angiogenic Progenitor Cell Function in Patients With Coronary Artery Disease Through a MicroRNA-21-Dependent Mechanism. Circ Res. 2010;107(1):138-143. doi: 10.1161/circresaha.110.216770.
9. Ji R, Cheng Y, Yue J, et al. MicroRNA Expression Signature and Antisense-Mediated Depletion Reveal an Essential Role of MicroRNA in Vascular Neointimal Lesion Formation. Circ Res. 2007;100(11):1579-1588. doi: 10.1161/circresaha.106.141986.
10. Raitoharju E, Lyytikäinen L-P, Levula M, et al. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis. 2011;219(1):211-217. doi: 10.1016/j.atherosclerosis.2011.07.020.
11. Fan X, Wang E, Wang X, et al. MicroRNA-21 is a unique signature associated with coronary plaque instability in humans by regulating matrix metalloproteinase-9 via reversion-inducing cysteine-rich protein with Kazal motifs. Exp Mol Pathol. 2014;96(2):242-249. doi: 10.1016/j.yexmp.2014.02.009.
12. Alvarez ML, Khosroheidari M, Eddy E, Done SC. MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis. Atherosclerosis. 2015;242(2):595-604. doi: 10.1016/j.atherosclerosis.2015.08.023.
13. Aranda JF, Madrigal-Matute J, Rotllan N, Fernández-Hernando C. MicroRNA modulation of lipid metabolism and oxidative stress in cardiometabolic diseases. Free Radic Biol Med. 2013;64:31-39. doi: 10.1016/j.freeradbiomed.2013.07.014.
14. Chen W-J, Yin K, Zhao G-J, et al. The magic and mystery of MicroRNA-27 in atherosclerosis. Atherosclerosis. 2012;222(2):314-323. doi: 10.1016/j.atherosclerosis.2012.01.020.
Review
For citations:
Shvangiradze T.A., Bondarenko I.Z., Troshina E.A., Shestakova M.V., Ilyin A.V., Nikankina L.V., Karpukhin A.V., Muzaffarova T.A., Kipkeeva F.M., Grishina K.A., Kuzevanova A.Yu. Profile of microRNAs associated with coronary heart disease in patients with type 2 diabetes. Obesity and metabolism. 2016;13(4):34-38. (In Russ.) https://doi.org/10.14341/omet2016434-38

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).