Preview

Obesity and metabolism

Advanced search

Association of obesity susceptibility gene variants with metabolic syndrome in women

https://doi.org/10.14341/omet2017233-40

Abstract

Aim. The aim of the study was a replicative analysis of the association of polymorphic variants of genes associated with obesity revealed by results of wide-genomic studies (GWAS) with the development of a cluster of metabolic syndrome risk parameters in women of Bashkir and Tatar ethnicity. The polymorphic markers of the following genes were analyzed: SEC16B, FADS1, KCTD15, MAF, MAP2K5, NEGR1, BDNF, TMEM18.


Materials and methods. The study involved 243 women with metabolic syndrome and 298 women without the metabolic syndrome. Amplification of DNA fragments was performed using real-time PCR and TaqMan technique.


Results. We found the association the metabolic syndrome with genetic markers of genes MAF and TMEM18 from Tatar. Protective informative marker of the metabolic syndrome among Tatar and Bashkir was the TT haplotype TMEM18 gene (rs2860323 and rs6548238) (р=0.005 and р=0.001, respectively). We identified the association marker rs2241423 MAP2K5 gene with the level of waist circumference (p=0.003) and with the level of cholesterol (p=0.014), the marker rs11084753 KCTD15 gene with glucose levels after exercise (p=0.002), the level of triglycerides (p=0.003) and HDL (p=0.0008) among Tatar women. We identified the association rs2241423 MAP2K5 gene marker to glycated hemoglobin level (p=0.002) and a marker gene rs174550 FADS1 with triglyceride levels (p=0.02) among Bashkir women.


Conclusion. It can be assumed that the polymorphic variants FADS1, KCTD15, MAF, MAP2K5, TMEM18 genes are an important part of the genetic structure of predisposition to metabolic syndrome and/or to a cluster of clinical and biochemical indicators of the risk of metabolic syndrome.

About the Authors

Olga V. Kochetova

Institute of Biochemistry and Genetics of Ufa Scientific Centre of the Russian Academy of Sciences


Russian Federation

PhD


Competing Interests:

The authors declare no conflicts of interest related to the manuscript.



Leysan Z. Akhmadishina

Institute of Biochemistry and Genetics of Ufa Scientific Centre of the Russian Academy of Sciences


Russian Federation

PhD


Competing Interests:

Авторы декларируют отсутствие конфликта интересов, связанных с рукописью.



Gulnaz F. Korytina

Institute of Biochemistry and Genetics of Ufa Scientific Centre of the Russian Academy of Sciences


Russian Federation

ScD


Competing Interests:

Авторы декларируют отсутствие конфликта интересов, связанных с рукописью.



Artyom A. Karpov

City Clinical Hospital №8


Russian Federation

MD


Competing Interests:

Авторы декларируют отсутствие конфликта интересов, связанных с рукописью.



Olga E. Mustafina

Institute of Biochemistry and Genetics of Ufa Scientific Centre of the Russian Academy of Sciences


Russian Federation

ScD


Competing Interests:

Авторы декларируют отсутствие конфликта интересов, связанных с рукописью.



References

1. Мамедов М.Н. Метаболический синдром: практические аспекты диагностики и лечения в амбулаторных условиях. – М.: "ФАС-медиа"; 2008, 27 с. [Mamedov MN. Metabolicheskiy sindrom: prakticheskie aspekty diagnostiki i lecheniya v ambulatornykh usloviyakh. – M.: "FAS-media"; 2008. (In Russ.)].

2. Дедов И.И., Мельниченко Г.А. Ожирение. Этиология, патоге¬нез, клинические аспекты. М.: Медицинское информацион¬ное агентство, 2004. 456 с. [Dedov II, Mel'nichenko GA. Ozhirenie. Etiologiya, patogenez, klinicheskie aspekty. M.: Meditsinskoe informatsionnoe agentstvo, 2004. 456 s. (In Russ.)].

3. Alberti KGMM, Zimmet P, Shaw J. The metabolic syndrome — a new worldwide definition. The Lancet. 2005; 366(9491): 1059-1062.

4. Zhao X, Xi B, Shen Y, et al. An obesity genetic risk score is associated with metabolic syndrome in Chinese children. Gene. 2014; 535(2): 299-302. doi: 10.1016/j.gene.2013.11.006.

5. Fall T, Ingelsson E. Genome-wide association studies of obesity and metabolic syndrome. Mol Cell Endocrinol. 2014; 382(1): 740-57. doi:10.1016/j.mce.2012.08.018.

6. Willer CJ, Speliotes EK, Loos RJ, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nature genetics. 2009; 41(1): 25-34. doi: 10.1038/ng.287.

7. Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nature genetics. 2010; 42(2): 105-116.

8. Кочетова О.В., Викторова Т.В., Мустафина О.Е. с со авт. Ассоциации полиморфных вариантов генов ADRA2А и ADRB3 с метаболическим синдромом у татар. Генетика. 2015; 51(7): 830. [Kochetova OV, Viktorova TV, Mustafina OE,, et al. Genetic association of ADRA2A and ADRB3 genes with metabolic syndrome among the Tatars Russian Journal of Genetics. 2015; 51(7): 830].

9. De R, Hu T, Moore JH, et al. Characterizing gene-gene interactions in a statistical epistasis network of twelve candidate genes for obesity. BioData mining, 2015; 8 (1): 1. 10.1186/s13040-015-0077-x.

10. Jurvansuu JM, Goldman A, Chadwick BP. Obesity risk gene TMEM18 encodes a sequence-specific DNA-binding protein. PloS one. 2011; 6(9). e25317.

11. Serria MS, Ikeda H, Omoteyama K, et al. Regulation and differential expression of the c-maf gene in differentiating cultured cells. Biochem Biophys Res. Commun. 2003; 310(2): 318–326. doi: 10.1016/j.bbrc.2003.08.144

12. Tsuchiya M, Taniguchi S, Yasuda K, et al. Potential roles of large mafs in cell lineages and developing pancreas. Pancreas. 2006; 32(4): 408–416. doi: 10.1097/01.mpa.0000220867.64787.99

13. Blank V, Andrews N. The Maf transcription factors: regulators of differentiation. Trends in biochemical sciences. 1997; 22(11): 437-441.

14. Ranzani V, Rossetti G, Panzeri I, et al. The long intergenic noncoding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4. Nature immunology. 2015; 16(3). 318-325. doi: 10.1038/ni.3093

15. Meyre D, Delplanque J, Chèvre JC, et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat Genet. 2009; 41(2). 157-9. doi: 10.1038/ng.301.

16. Sandholt CH, Sparsø T, Grarup N, et al. Combined analyses of 20 common obesity susceptibility variants. Diabetes. 2010; 59(7): 1667-1673. doi: 10.2337/db09-1042.

17. Li X, Song F, Jiang H, et al. A genetic variation in the fat mass and obesity associated gene is associated with obesity and newly diagnosed type 2 diabetes in a Chinese population. Diabetes/metabolism research and reviews. 2010; 26(2): 128-132. doi: 10.1002/dmrr.1066.

18. den Hoed M, Luan JA, Langenberg C, et al. Evaluation of common genetic variants identified by GWAS for early onset and morbid obesity in population-based samples // Internat. J. of Obesity. 2013. V. 37. №. 2. P. 191-196. doi: 10.1038/ijo.2012.34

19. Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007; 316(5826): 889-894. doi: 10.1126/science.1141634.

20. Haller S. Polymorphisms in FTO and MAF Genes and Birth Weight, BMI, Ponderal Index, Weight Gain in a Large Cohort of Infants with a Birth Weight below 1500 Grams. PloS One. 2013; 8(6). e66331.

21. Pinna LA, Ruzzene M. How do protein kinases recognize their substrates? Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 1996;1314(3):191-225

22. Rask-Andersen M, Jacobsson J, Moschonis G, et al. The MAP2K5-linked SNP rs2241423 is associated with BMI and obesity in two cohorts of Swedish and Greek children. BMC medical genetics. 2012; 13(1): 36. doi: 10.1186/1471-2350-13-36.

23. Reyes S, Park S, Terzic A, Alekseev A. KATP channels process nucleotide signals in muscle thermogenic response. Critical reviews in biochemistry and molecular biology. 2010: 45(6): 506-519. doi: 10.3109/10409238.2010.513374.

24. Dušátková L, Zamrazilová H, Sedláčková B, et al. Association of obesity susceptibility gene variants with metabolic syndrome and related traits in 1,443 Czech adolescents. Folia Biol (Praha). 2013; 59(3): P. 123-33.

25. Lv D, Zhang DD, Wang H, et al. Genetic variations in SEC16B, MC4R, MAP2K5 and KCTD15 were associated with childhood obesity and interacted with dietary behaviors in Chinese school-age population. Gene. 2015; 560(2), 149-155. doi:10.1016/j.gene.2015.01.054

26. Zhu J, Sun Q, Zong G, et al. Interaction between a common variant inFADS1and erythrocyte polyunsaturated fatty acids on lipid profile in Chinese Hans. Journal of Lipid Research. 2013;54(5):1477-1483. doi: 10.1194/jlr.P027516.


Supplementary files

1. Рис. 1. Гаплотипы гена TMEM18, ассоциированные с риском развития метаболического синдрома у татарок и башкирок.
Subject
Type Исследовательские инструменты
View (32KB)    
Indexing metadata ▾
2. Рис. 2. Анализ клинико-метаболических характеристик у пациенток-татарок.
Subject
Type Исследовательские инструменты
View (78KB)    
Indexing metadata ▾
3. Рис. 3. Анализ клинико-метаболических характеристик у пациенток-башкирок.
Subject
Type Исследовательские инструменты
View (29KB)    
Indexing metadata ▾

Review

For citations:


Kochetova O.V., Akhmadishina L.Z., Korytina G.F., Karpov A.A., Mustafina O.E. Association of obesity susceptibility gene variants with metabolic syndrome in women. Obesity and metabolism. 2017;14(2):33-40. (In Russ.) https://doi.org/10.14341/omet2017233-40

Views: 1589


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)