Питание во внутриутробный период жизни: фетальное программирование метаболического синдрома
https://doi.org/10.14341/omet2015310-17
Аннотация
Исследования последнего десятилетия в аспекте профилактики метаболических заболеваний коснулись изучения влияния внешней среды еще на уровне внутриутробного развития плода. Этой проблеме было посвящено большое количество проспективных и ретроспективных исследований, продемонстрировавших потенциальное влияние, в частности, питания матери на дальнейшее здоровье ребенка не только в детстве, но и во взрослой жизни. В статье представлены результаты наиболее крупных и известных на сегодняшний день исследований в этой области.
Об авторе
Фатима Хаджимуратовна ДзгоеваРоссия
к.м.н.
Список литературы
1. Морбидное ожирение. / Под редакцией И.И. Дедова. – М; 2014. [Morbidnoe ozhirenie. Ed by Dedov I I. Moscow; 2014.(In Russ).]
2. Godfrey KM, Barker DJP. Fetal programming and adult health. Public Health Nutrition. 2007;4(2b). doi: 10.1079/phn2001145
3. Vaiserman AM. Early-life nutritional programming of longevity. Journal of developmental origins of health and disease. 2014;5(05):325-38.
4. Forsen T, Eriksson JG, Tuomilehto J, Osmond C, Barker DJP. Growth in utero and during childhood among women who develop coronary heart disease: longitudinal study. Bmj. 1999;319(7222):1403-7. doi: 10.1136/bmj.319.7222.1403
5. Nilsson E, Stålberg G, Lichtenstein P, Cnattingius S, Olausson PO, Hultman CM. Fetal Growth Restriction and Schizophrenia: A Swedish Twin Study. Twin Research and Human Genetics. 2012;8(04):402-8. doi: 10.1375/twin.8.4.402
6. Can J. The relation between maternal schizophrenia and low birth weight is modified by paternal age. Canadian Journal of Psychiatry. 2010;55(6):377-85.
7. Kaijser M, Akre O, Cnattingius S, Ekbom A. Preterm birth, low birth weight, and risk for esophageal adenocarcinoma. Gastroenterology. 2005;128(3):607-9. doi: 10.1053/j.gastro.2004.11.049
8. Xu X, Dailey AB, Peoples-Sheps M, Talbott EO, Li N, Roth J. Birth Weight as a Risk Factor for Breast Cancer: A Meta-Analysis of 18 Epidemiological Studies. Journal of Women's Health. 2009;18(8):1169-78. doi: 10.1089/jwh.2008.1034
9. Xue F, Michels KB. Intrauterine factors and risk of breast cancer: a systematic review and meta-analysis of current evidence. The Lancet Oncology. 2007;8(12):1088-100. doi: 10.1016/s1470-2045(07)70377-7
10. Mellemkjær L, Olsen ML, Sørensen HT, Thulstrup AM, Olsen J, Olsen JH. Cancer Causes and Control. 2003;14(1):61-4. doi: 10.1023/a:1022570305704 11. Vestergaard M, Christensen J. Register-based studies on febrile seizures in Denmark. Brain and Development. 2009;31(5):372-7. doi: 10.1016/j.braindev.2008.11.012
11. Knip M, Åkerblom HK. Early Nutrition and Later Diabetes Risk. 2005;569:142-50. doi: 10.1007/1-4020-3535-7_21
12. Hattersley AT, Tooke JE. The fetal insulin hypothesis: an alternative explanation of the association of low bir thweight with diabetes and vascular disease. The Lancet. 1999;353(9166):1789-92. doi: 10.1016/s0140-6736(98)07546-1
13. Freathy RM, Bennett AJ, Ring SM, Shields B, Groves CJ, Timpson NJ, et al. Type 2 Diabetes Risk Alleles Are Associated With Reduced Size at Birth. Diabetes. 2009;58(6):1428-33. doi: 10.2337/db08-1739
14. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nature Genetics. 2010;42(2):105-16. doi: 10.1038/ng.520
15. Hales CN. The thrifty phenotype hypothesis. British Medical Bulletin. 2001;60(1):5-20. doi: 10.1093/bmb/60.1.5
16. Gluckman PD, Hanson MA. Maternal constraint of fetal growth and its consequences. Seminars in Fetal and Neonatal Medicine. 2004;9(5):419-25. doi: 10.1016/j.siny.2004.03.001
17. Giussani DA, Phillips PS, Anstee S, Barker DJP. Effects of Altitude versus Economic Status on Birth Weight and Body Shape at Birth. Pediatric Research.2001;49(4):490-4. doi: 10.1203/00006450-200104000-00009
18. McLean E, Cogswell M, Egli I, Wojdyla D, de Benoist B. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993–2005. Public Health Nutrition. 2008;12(04):444. doi: 10.1017/s1368980008002401
19. Rosario J, Gomez M, Anbu P. Does the maternal micronutrient deficiency (copper or zinc or vitamin e) modulate the expression of placental 11 β hydroxysteroid dehydrogenase-2 per se predispose offspring to insulin resistance and hypertension in later life. 2008.
20. Fall CH, Fisher DJ, Osmond C, Margetts BM, Group MMSS. Multiple micronutrient supplementation during pregnancy in low-income countries: a meta-analysis of effects on birth size and length of gestation. Food and nutrition bulletin. 2009;30(4 Suppl):S533.
21. Lesage J. Prenatal stress induces intrauterine growth restriction and programmes glucose intolerance and feeding behaviour disturbances in the aged rat. Journal of Endocrinology. 2004;181(2):291-6. doi: 10.1677/joe.0.1810291
22. Phillips DIW. Elevated Plasma Cortisol Concentrations: A Link between Low Birth Weight and the Insulin Resistance Syndrome? Journal of Clinical Endocrinology & Metabolism. 1998;83(3):757-60. doi: 10.1210/jc.83.3.757
23. Savona-Ventura C, Chircop M. Birth weight influence on the subsequent development of gestational diabetes mellitus. Acta diabetologica. 2003;40(2):101-4.
24. Nelson SM, Matthews P, Poston L. Maternal metabolism and obesity: modifiable determinants of pregnancy outcome. Human Reproduction Update. 2009;16(3):255-75. doi: 10.1093/humupd/dmp050
25. Hedderson MM, Williams MA, Holt VL, Weiss NS, Ferrara A. Body mass index and weight gain prior to pregnancy and risk of gestational diabetes mellitus. American journal of obstetrics and gynecology. 2008;198(4):409. e1-. e7.
26. Jansson N, Pettersson J, Haafiz A, Ericsson A, Palmberg I, Tranberg M, et al. Down-regulation of placental transport of amino acids precedes the development of intrauterine growth restriction in rats fed a low protein diet. The Journal of Physiology. 2006;576(3):935-46. doi: 10.1113/jphysiol.2006.116509 28. Fowden AL, Sferruzzi-Perri AN, Coan PM, Constancia M, Burton GJ. Placental efficiency and adaptation: endocrine regulation. The Journal of Physiology. 2009;587(14):3459-72. doi: 10.1113/jphysiol.2009.173013
27. Woodall SM, Breier BH, Johnston BM, Gluckman PD. A model of intrauterine growth retardation caused by chronic maternal undernutrition in the rat: effects on the somatotrophic axis and postnatal growth. Journal of Endocrinology. 1996;150(2):231-42. doi: 10.1677/joe.0.1500231
28. Coan PM, Vaughan OR, Sekita Y, Finn SL, Burton GJ, Constancia M, et al. Adaptations in placental phenotype support fetal growth during undernutrition of pregnant mice. The Journal of Physiology. 2010;588(3):527-38. doi: 10.1113/jphysiol.2009.181214
29. Sugden MC, Langdown ML, Munns MJ, Holness MJ. Maternal glucocorticoid treatment modulates placental leptin and leptin receptor expression and materno-fetal leptin physiology during late pregnancy, and elicits hypertension associated with hyperleptinaemia in the early-growth-retarded adult offspring. European Journal of Endocrinology. 2001;145(4):529-39.
30. Wen HY, Abbasi S, Kellems RE, Xia Y. mTOR: A placental growth signaling sensor. Placenta. 2005;26:S63-S9. doi: 10.1016/j.placenta.2005.02.004 33. Nagarajan R, Hogart A, Gwye Y, Martin MR, LaSalle JM. Reduced MeCP2 Expression is Frequent in Autism Frontal Cortex and Correlates with Aberrant MECP2 Promoter Methylation. Epigenetics. 2014;1(4):172-82. doi: 10.4161/epi.1.4.3514
31. Waterland RA. Epigenetic epidemiology of obesity: application of epigenomic technology. Nutrition Reviews. 2008;66:S21-S3. doi: 10.1111/j.1753-4887.2008.00060.x
32. Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S, Bispham J, et al. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proceedings of the National Academy of Sciences. 2007;104(49):19351-6. doi: 10.1073/pnas.0707258104
33. Waterland RA, Kellermayer R, Rached MT, Tatevian N, Gomes MV, Zhang J, et al. Epigenomic profiling indicates a role for DNA methylation in early postnatal liver development. Human Molecular Genetics. 2009;18(16):3026-38. doi: 10.1093/hmg/ddp241
34. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. The Journal of nutrition. 2005;135(6):1382-6.
35. Lillycrop KA, Phillips ES, Torrens C, Hanson MA, Jackson AA, Burdge GC. Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPARα promoter of the offspring. British Journal of Nutrition. 2008;100(02). doi: 10.1017/s0007114507894438
36. Bogdarina I, Welham S, King PJ, Burns SP, Clark AJL. Epigenetic Modification of the Renin-Angiotensin System in the Fetal Programming of Hypertension. Circulation Research. 2007;100(4):520-6. doi: 10.1161/01.res.0000258855.60637.58
37. Thompson RF, Fazzari MJ, Niu H, Barzilai N, Simmons RA, Greally JM. Experimental Intrauterine Growth Restriction Induces Alterations in DNA Methylation and Gene Expression in Pancreatic Islets of Rats. Journal of Biological Chemistry. 2010;285(20):15111-8. doi: 10.1074/jbc.M109.095133
38. DelCurto H, Wu G, Satterfield MC. Nutrition and reproduction: links to epigenetics and metabolic syndrome in offspring. Current Opinion in Clinical Nutrition & Metabolic Care. 2013;16(4):385-91.
39. Fernandez-Twinn DS, Ozanne SE. Early life nutrition and metabolic programming. Annals of the New York Academy of Sciences. 2010;1212(1):78-96. doi: 10.1111/j.1749-6632.2010.05798.x
40. Brenseke B, Prater MR, Bahamonde J, Gutierrez JC. Current thoughts on maternal nutrition and fetal programming of the metabolic syndrome. Journal of pregnancy. 2013;2013.
41. Symonds ME, Mendez MA, Meltzer HM, Koletzko B, Godfrey K, Forsyth S, et al. Early life nutritional programming of obesity: mother-child cohort studies. Annals of Nutrition and Metabolism. 2013;62(2):137-45.
Рецензия
Для цитирования:
Дзгоева Ф.Х. Питание во внутриутробный период жизни: фетальное программирование метаболического синдрома. Ожирение и метаболизм. 2015;12(3):10-17. https://doi.org/10.14341/omet2015310-17
For citation:
Dzgoeva F.Kh. Intrauterine nutrition: fetal programming of metabolic syndrome. Obesity and metabolism. 2015;12(3):10-17. (In Russ.) https://doi.org/10.14341/omet2015310-17

Контент доступен под лицензией Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).