Hypothyroid myopathy and its association with MICU1 gene mutations: a clinical caseauthors
https://doi.org/10.14341/omet13287
Abstract
Thyroid hormones are involved in the activation of glycogenolysis and mitochondrial oxidative phosphorylation. Kocher– Debré–Semelaigne Syndrome, also known as hypothyroid myopathy, is characterized by reduced glycogenolytic activity, leading to glycogen deposition in muscles. These reserves begin to deplete as euthyroidism is achieved.
Primarily, patients complain of muscle weakness, mainly in the proximal muscle groups, stiffness, myalgia, and cramps. A distinctive feature of hypothyroid myopathies is the reversibility of clinical manifestations and a significant improvement in well-being with medical compensation of the disease. However, the absence of a pronounced clinical picture of hypothyroidism, combined with its rare occurrence, complicates early diagnosis and often requires differential diagnosis with other types of myopathies. This article presents a clinical case of a combination of genetically determined myopathy with extrapyramidal symptoms, associated with a mutation in the MICU1 gene, and hypothyroid myopathy associated with congenital hypothyroidism in a patient from a consanguineous marriage.
About the Authors
M. A. PerepelovaRussian Federation
Margarita A. Perepelova, MD
11 Dm. Ulyanova street, 117292 Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
V. K Slokva
Russian Federation
Valeria K. Slokva, MD
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
E. A. Pigarova
Russian Federation
Ekaterina A. Pigarova, MD, PhD
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
A. S. Shutova
Russian Federation
Aleksandra S. Shutova, MD, PhD
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
A. A. Kolodkina
Russian Federation
Anna A. Kolodkina, MD, PhD
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
A. V. Perepelov
Russian Federation
Alexsander V. Perepelov, MD, PhD
Obninsk
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
L. K. Dzeranova
Russian Federation
Larisa K. Dzeranova, MD, Sc.D.
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
References
1. Il’chenko VA, Lebedeva AO, Gordienko BV, et al. «Masks» of hypothyroidism. Al’manakh klinicheskoi meditsiny. 2014;(35):116-8. (In Russ.).
2. Murav’eva GV, Devlikamova FI. Neuromuscular complications of diseases of the thyroid gland. Prakticheskaya meditsina. 2013;(1):38-41. (In Russ.).
3. Lockshin MD. Endocrine origins of rheumatic disease. Diagnostic clues to interrelated syndromes. Postgrad Med. 2002;111(4):87-8, 91-2
4. Ruff RL, Weissmann J. Endocrine Myopathies. Neurol Clin. 1988;6(3):575-592. doi: https://doi.org/10.1016/S0733-8619(18)30862-4
5. Thyroid myopathy. Effect of treatment with thyroid hormones / A. Del Palacio [et al.] An Med Interna. 1990;7(3):120-2
6. Fadeev VV, Mel’nichenko GA. Gipotireoz (rukovodstvo dlya vrachei) [Hypothyroidism (manual for doctors)]. Moscow: RKI Severo press; 2004. 286 p.
7. Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, Braverman LE. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002 Feb;87(2):489-99. doi: https://doi.org/10.1210/jcem.87.2.8182.
8. Qiang F, He Q, Wang L, Sheng J. Polymyositis-like hypothyroid myopathy: diagnostic challenges and therapeutic outcomes in a case series. Clin Exp Med. 2025;25(1):286. doi: https://doi.org/10.1007/s10238-025-01828-3
9. Logan CV, Szabadkai G, Sharpe JA, Parry DA, Torelli S, Childs AM, et al. Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling. Nat Genet. 2014;46(2):188–193 doi: https://doi.org/10.1038/ng.2851
10. Debattisti V, Horn A, Singh R, Seifert EL, Hogarth MW, Mazala DA et al (2019) Dysregulation of mitochondrial Ca2+ uptake and sarcolemma repair underlie muscle weakness and wasting in patients and mice lacking MICU1. Cell Rep 29(5):1274–1286.e6. https://doi.org/10.1016/j.celrep.2019.09.063
11. Tufi R, Gleeson TP, von Stockum S, Hewitt VL, Lee JJ, Terriente-Felix A, et al. Comprehensive genetic characterization of mitochondrial Ca 2+ uniporter components reveals their different physiological requirements in vivo. Cell Rep 2019;27(5):1541–1550.e5. doi: https://doi.org/10.1016/j.celrep.2019.04.033
12. Llorente-Folch I, Rueda CB, Pardo B, Szabadkai G, Duchen MR, Satrustegui J. The regulation of neuronal mitochondrial metabolism by calcium. J Physiol. 2015;593(16):3447–3462. doi: https://doi.org/10.1113/JP270254
13. Burgoyne RD, Haynes LP. Understanding the physiological roles of the neuronal calcium sensor proteins. Mol Brain. 2012;5(1):1–11. doi: https://doi.org/1 0.1186/1756-6606-5-2
14. Kawamoto EM, Vivar C, Camandola S. Physiology and pathology of calcium signaling in the brain. Front Pharmacol. 2012;3 APR(April):1–17. doi: https://doi.org/10.3389/fphar.2012.00061
15. Ryglewski S, Pflueger HJ, Duch C. Expanding the neuron’s calcium signaling repertoire: Intracellular calcium release via voltageinduced PLC and IP3R activation. PLoS Biol. 2007;5(4):818–827. doi: https://doi.org/10.1371/journal.pbio.0050066
16. Arvizo RR, Moyano DF, Saha S, Thompson MA, Bhattacharya R, et al. Probing novel roles of the mitochondrial uniporter in ovarian cancer cells using nanoparticles. J Biol Chem. 2013;288(24):17610–17618. doi: https://doi.org/10.1074/jbc.M112.435206
17. Chaudhuri D, Sancak Y, Mootha VK, Clapham DE. MCU encodes the pore conducting mitochondrial calcium currents. Elife. 2013(2):4–11. doi: https://doi.org/10.7554/eLife.00704
18. Young M, Kattner K, Gupta K. Pituitary hyperplasia resulting from primary hypothyroidism mimicking macroadenomas. Br J Neurosurg. 1999;13(2):138-42. doi: https:// doi.org/10.1080/02688699943880
19. Horvath E, Kovacs K, Scheithauer BW. Pituitary hyperplasia. Pituitary. 1999;1(3-4):169-79. doi: https:// doi.org/10.1023/a:1009952930425
20. Sazonova DV, Perepelova MA, Shutova AS, Nikankina LV, Kolesnikova GS, Pigarova EA, Dzeranova LK. Combination of macro-TSH and macroprolactinemia phenomena in a patient with autoimmune thyroiditis and vitiligo. Problems of Endocrinology. 2024;70(5):34-39. (In Russ.). doi: https://doi.org/10.14341/probl13390
Review
For citations:
Perepelova M.A., Slokva V.K., Pigarova E.A., Shutova A.S., Kolodkina A.A., Perepelov A.V., Dzeranova L.K. Hypothyroid myopathy and its association with MICU1 gene mutations: a clinical caseauthors. Obesity and metabolism. 2025;22(3):263-268. (In Russ.) https://doi.org/10.14341/omet13287
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).




































