Identification of novel pathogenic variants in the GNAS gene in children with morbid obesity and pseudohypoparathyroidism
https://doi.org/10.14341/omet13169
Abstract
Pseudohypoparathyroidism (PHP) is a clinically heterogeneous group of rare inherited bone diseases characterized by resistance of target organs to the action of parathormone (PTH) as result of an epi/genetic disorder.
This article describes patients with the phenotype of pseudohypoparathyroidism type 1a in whom two previously undescribed variants in the GNAS gene were identified: NM_000516.7(GNAS):c.586-18_591del, which captures intron 7, exon 8 acceptor splice site and exon 8 splice site resulting in a 24 nucleotide deletion, and NM_000516.7(GNAS):c.201del p.Phe68LeufsTer32 resulting in a reading frame shift and a premature termination codon in two unrelated children with progressive weight gain from birth. According to the pathogenicity evaluation criteria, both variants are categorized as likely pathogenic variants
About the Authors
D. A. KopytinaRussian Federation
Daria A. Kopytina, MD
11 Dm. Ulyanova street, 117036 Moscow
Competing Interests:
None
O. V. Vasyukova
Russian Federation
Olga V. Vasyukova, MD
11 Dm. Ulyanova street, 117036 Moscow
Competing Interests:
None
R. R. Salakhov
Russian Federation
Ramil R. Salakhov, MD
11 Dm. Ulyanova street, 117036 Moscow
Competing Interests:
None
P. L. Okorokov
Russian Federation
Pavel L. Okorokov, MD
11 Dm. Ulyanova street, 117036 Moscow
Competing Interests:
None
E. V. Kopytina
Russian Federation
Elena V. Kopytina, MD
Competing Interests:
None
E. V. Nagaeva
Russian Federation
Elena V. Nagaeva, MD, PhD
11 Dm. Ulyanova street, 117036 Moscow
Competing Interests:
None
R. I. Khusainova
Russian Federation
Rita I. Khusainova, PhD in biology
11 Dm. Ulyanova street, 117036 Moscow
Competing Interests:
None
I. R. Minniakhmetov
Russian Federation
Ildar R. Minniakhmetov, PhD in biology
11 Dm. Ulyanova street, 117036 Moscow
Competing Interests:
None
S. V. Popov
Russian Federation
Sergey V. Popov
11 Dm. Ulyanova street, 117036 Moscow
Competing Interests:
None
O. B. Bezlepkina
Russian Federation
Olga B. Bezlepkina, MD, PhD, Professor
11 Dm. Ulyanova street, 117036 Moscow
Competing Interests:
None
N. G. Mokrysheva
Russian Federation
Natalia G. Mokrysheva, MD, PhD, Professor
11 Dm. Ulyanova street, 117036 Moscow
ResearcherID: AAY-3761-2020
Scopus Author ID: 35269746000
Competing Interests:
None
References
1. Vajravelu ME, Tas E, Arslanian S. Pediatric Obesity: Complications and Current Day Management. Life. 2023;13(7):1591. doi: https://doi.org/10.3390/life13071591
2. Saeed S, Arslan M, Froguel P. Genetics of Obesity in Consanguineous Populations: Toward Precision Medicine and the Discovery of Novel Obesity Genes. Obesity (Silver Spring). 2018;26(3):474-484. doi: https://doi.org/10.1002/oby.22064
3. Kühnen P, Clément K, Wiegand S, Blankenstein O, Gottesdiener K, et al. Proopiomelanocortin Deficiency Treated with a Melanocortin-4 Receptor Agonist. N Engl J Med. 2016;375(3):240-6. doi: https://doi.org/10.1056/NEJMoa1512693
4. Kaur Y, de Souza RJ, Gibson WT, Meyre D. A systematic review of genetic syndromes with obesity. Obes. Rev. 2017;18:603–634. doi: https://doi.org/10.1111/obr.12531
5. Abbas A, Hammad AS, Al-Shafai M. The role of genetic and epigenetic GNAS alterations in the development of early-onset obesity. Mutat Res Rev Mutat Res. 2023;793:108487. doi: https://doi.org/10.1016/j.mrrev.2023.108487
6. Nakamura Y, Matsumoto T, Tamakoshi A, Kawamura T, Seino Y, et al. Prevalence of idiopathic hypoparathyroidism and pseudohypoparathyroidism in Japan. J Epidemiol. 2000;10(1):29-33. doi: https://doi.org/10.2188/jea.10.29
7. Underbjerg L, Sikjaer T, Mosekilde L, Rejnmark L. Pseudohypoparathyroidism - epidemiology, mortality and risk of complications. Clin Endocrinol (Oxf ). 2016;84(6):904-11. doi: https://doi.org/10.1111/cen.12948
8. Jüppner H. Molecular Definition of Pseudohypoparathyroidism Variants. J Clin Endocrinol Metab. 2021;106(6):1541-1552. doi: https://doi.org/10.1210/clinem/dgab060
9. Romanet P, Galluso J, Kamenicky P, Hage M, Theodoropoulou M, et al. Somatotroph Tumors and the Epigenetic Status of the GNAS Locus. Int J Mol Sci. 2021; 22(14):7570. doi: https://doi.org/10.3390/ijms22147570
10. Mantovani G, Linglart A, Garin I, Silve C, Elli FM, de Nanclares GP. Clinical utility gene card for: pseudohypoparathyroidism. Eur J Hum Genet. 2013;21(6). doi: https://doi.org/10.1038/ejhg.2012.211
11. Makazan N.V. Rol’ narushenij postreceptornogo signalinga v razvitii mul’tigormonal’noj rezistentnosti i avtonomnoj giperfunkcii endokrinnyh zhelez u detej: Avtoref. dis. kand. med. nauk. — M.; 2017, 14 s. (In Russ.).
12. Albright F, Burnett CH, Smith PH, Parson W. Pseudohypoparathyroidism – an example of “Seabright-Bantam syndrome”. Endocrinology. 1942;30:922–932
13. Albright F, Forbes AP, Henneman PH. Pseudopseudohypoparathyroidism. Transactions of the Association of American Physicians. 1952;65:337–350
14. Eyre WG, Reed WB. Albright’s hereditary osteodystrophy with cutaneous bone formation. Archives of Dermatology. 1971;104:634–642. doi: https://doi.org/10.1001/archderm.1971.04000240058008
15. Nakamura Y, Matsumoto T, Tamakoshi A. Prevalence of idiopathic hypoparathyroidism and pseudohypoparathyroidism in japan. J Epidemiol. 2000;10(1):29-33. doi: https://doi.org/10.2188/jea.10.29
16. Underbjerg L, Sikjaer T, Mosekilde L, Rejnmark L. The epidemiology of hypo- and pseudohypoparathyroidism in denmark. Bone. 2012;50:s171. doi: https://doi.org/10.1016/j.bone.2012.02.536
17. Dzeranova LK, Makazan NV, Pigarova EA, Tiuliakova AN, Artemova EV, et al. Multiple hormonal resistance and metabolic disorders in pseudogypoparatiosis. Obesity and metabolism. 2018;15(2):51-55. (In Russ.). doi: https://doi.org/10.14341/OMET20182
18. Sakamoto A. Tissue-specific imprinting of the G protein Gs is associated with tissue-specific differences in histone methylation. Hum Mol Genet. 2004;13(8):819-828. doi: https://doi.org/10.1093/hmg/ddh098
19. Thiele S, Mantovani G, Barlier A, et al. From pseudohypoparathyroidism to inactivating PTH/PTHrP signalling disorder (iPPSD), a novel classification proposed by the EuroPHP network. Eur J Endocrinol. 2016;175(6):P1-P17. doi: https://doi.org/10.1530/EJE-16-0107
20. Mantovani G, Linglart A, Garin I, Silve C, et al. Clinical utility gene card for: pseudohypoparathyroidism. Eur J Hum Genet. 2013;21(6). doi: https://doi.org/10.1038/ejhg.2012.211
21. Yavropoulou MP, Chronopoulos E, Trovas G, Avramidis E, et al. Hypercalcitoninaemia in pseudohypo-parathyroidism type 1A and type 1B. Endocrinol Diabetes Metab Case Rep. 2019;2019:18-0125. doi: https://doi.org/10.1530/EDM-18-0125
22. Shoemaker AH, Jüppner H. Nonclassic features of pseudohypoparathyroidism type 1A. Curr Opin Endocrinol Diabetes Obes. 2017;24(1):33-38.;
23. Mantovani G, Bastepe M, Monk D, et al. Diagnosis and management of pseudohypoparathyroidism and related disorders: first international consensus statement. Nat Rev Endocrinol. 2018;14: 476-500
24. Elli FM, Linglart A, Garin I, de Sanctis L, Bordogna P, et al. The Prevalence of GNAS Deficiency-Related Diseases in a Large Cohort of Patients Characterized by the EuroPHP Network. J Clin Endocrinol Metab. 2016;101(10):3657-3668. doi: https://doi.org/10.1210/jc.2015-4310
25. Garin I, Elli FM, Linglart A, Silve C, de Sanctis L, et al. Novel microdeletions affecting the GNAS locus in pseudohypoparathyroidism: characterization of the underlying mechanisms. J Clin Endocrinol Metab. 2015;100(4):E681- 7. doi: https://doi.org/10.1210/jc.2014-3098
26. Jüppner H. Molecular Definition of Pseudohypoparathyroidism Variants. J Clin Endocrinol Metab. 2021;106(6):1541-1552. doi: https://doi.org/10.1210/clinem/dgab060
27. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-24. doi: https://doi.org/10.1038/gim.2015.30
28. Ryzhkova OP, Kardymon OL, Prohorchuk EB, Konovalov FA, Maslennikov AB, et al. Rukovodstvo po interpretacii dannyh posledovatel’nosti DNK cheloveka, poluchennyh metodami massovogo parallel’nogo sekvenirovaniya (MPS) (redakciya 2018, versiya 2). Medicinskaya genetika. 2019;18(2):3-23. (In Russ.). doi: https://doi.org/10.25557/2073-7998.2019.02.3-23
29. Robinson JT, Thorvaldsdóttir H, Wenger AM, Zehir A, Mesirov JP. Variant Review with the Integrative Genomics Viewer. Cancer Res. 2017;77(21):e31-e34. doi: https://doi.org/10.1158/0008-5472.CAN-17-0337
30. Chen M, Gavrilova O, Liu J, et al. Alternative Gnas gene products have opposite effects on glucose and lipid metabolism. Proceedings of the National Academy of Sciences. 2005;102(20);7386-7391
31. Mendes de Oliveira E, Keogh JM, Talbot F, et al. Obesity-Associated GNAS Mutations and the Melanocortin Pathway. N Engl J Med. 2021;385(17):1581-1592. doi: https://doi.org/10.1056/NEJMoa2103329
32. Mantovani G, Bastepe M, Monk D, et al. Diagnosis and management of pseudohypoparathyroidism and related disorders: first international Consensus Statement. Nat Rev Endocrinol. 2018;14(8):476-500. doi: https://doi.org/10.1038/s41574-018-0042-0
33. Borges MF, Abelin N, Toledo SPA. Calcitonina: fisiologia e deficiência. Arq Brasil Endocrinol Metab. 1996;40:67–82
34. Gagel RF, Marx SJ. Multiple endocrine neoplasia. In: Larsen PR, Kronenberg HM, Melmed S, Polonsky KS, editors. Williams Textbook of Endocrinology. 10th ed. Philadelphia: Saunders; 2003. pp. 1717–62
35. Hoff AO, Cote GJ, Gagel RF. Multiple endocrine neoplasias. Annu Rev Physiol. 2000;62:377–411
36. Niccoli P, Brunet P, Roubicek C, Roux F, Baudin E, Lejeune PJ, et al. Abnormal calcitonin basal levels and pentagastrin response in patients with chronic renal failure on maintenance hemodialysis. Europ J Endocrinol. 1995;132:75–81
37. Lissak B, Baudin E, Cohen R, Barbot N, Meyrier A, Niccoli P, et al. Pentagastrin testing in patients with renal insufficiency: normal responsivity of mature calcitonin. Thyroid. 1998;8:265–8
38. Borget I, De Pouvourville G, Schlumberger M. Editorial: Calcitonin determination in patients with nodular thyroid disease. J Clin Endocrinol Metab. 2007;92:425–7
39. Hayashida CY, Alves VA, Kanamura CT, Ezabella MC, Abelin NM, Nicolau W, et al. Immunohistochemistry of medullary thyroid carcinoma and C-cell hyperplasia by an affinity-purified anti-human calcitonin antiserum. Cancer. 1993;72:1356–63
40. Toledo SPA, Santos MA, Toledo RA, Lourenço DM, Jr Impact of RET protooncogene analysis on the clinical management of multiple endocrine neoplasia type 2. Clinics. 2006;61:59–70
41. Karanikas G, Moameni A, Poetzi C, Zettinig G, Kaserer K, Bieglmayer C, et al. Frequency and relevance of elevated calcitonin levels in patients with neoplastic and nonneoplastic thyroid disease and in healthy subjects. J Clin Endocrinol Metab. 2004;89:515–9
42. Viégas TMRF. Dissertação de Mestrado. Faculdade de Medicina da Universidade de São Paulo; 2001. Comparação dos testes de estímulo da secreção de calcitonina (omeprazol versus cálcio) no diagnóstico e seguimento de pacientes com carcinoma medular de tireóide
43. Toledo SP, Lourenço DM Jr, Santos MA, Tavares MR, Toledo RA, Correia-Deur JE. Hypercalcitoninemia is not pathognomonic of medullary thyroid carcinoma. Clinics (Sao Paulo). 2009;64(7):699-706
44. Toledo SP, Lourenço DM Jr, Santos MA, Tavares MR, Toledo RA, Correia-Deur JE. Hypercalcitoninemia is not pathognomonic of medullary thyroid carcinoma. Clinics (Sao Paulo). 2009;64(7):699-706. doi: https://doi.org/10.1590/S1807-59322009000700015
45. Mantovani G, Bastepe M, Monk D, de Sanctis L, Thiele S, et al. Diagnosis and management of pseudohypoparathyroidism and related disorders: first international Consensus Statement. Nat Rev Endocrinol. 2018;14(8):476-500. doi: https://doi.org/10.1038/s41574-018-0042-0
46. Ferrari D, Pandozzi C, Filice A, et al. C-Cell Hyperplasia and Cystic Papillary Thyroid Carcinoma in a Patient with Type 1B Pseudohypoparathyroidism and Hypercalcitoninaemia: Case Report and Review of the Literature. J Clin Med. 2023;12(24):7525. doi: https://doi.org/10.3390/jcm12247525
47. Masi L, Brandi ML. Calcitonin and calcitonin receptors. Clin Cases Miner Bone Metab. 2007
48. Osipova V.V., Filatova E.G., Artemenko A.R., Lebedeva E.R., Azimova Yu.E., et al. Diagnostika i lechenie migreni: rekomendacii rossijskih ekspertov. Zhurnal nevrologii i psihiatrii im. S.S. Korsakova. Specvypuski. 2017;117(1- 2):28-42 (In Russ.).
49. Hay DL, Garelja ML, Poyner DR, Walker CS. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. British Journal of Pharmacology. 2018;175(1):3-17. doi: https://doi.org/10.1111/bph.14075
50. Lassen L, Haderslev P, Jacobsen V, Iversen H, Sperling B, Olesen J. Cgrp May Play A Causative Role in Migraine. Cephalalgia. 2002;22(1):54-61. doi: https://doi.org/10.1046/j.1468-2982.2002.00310.x
51. BRETHERTON‐WATT D, GHATEI MA, JAMAL H, GILBEY SG, JONES PM, BLOOM SR. The Physiology of Calcitonin Gene—Related Peptide in the Islet Compared with That of Islet Amyloid Polypeptide (Amylin). Ann N Y Acad Sci. 1992. doi: https://doi.org/10.1111/j.1749-6632.1992.tb22777.x
52. Gram DX, Hansen AJ, Wilken M, et al. Plasma calcitonin generelated peptide is increased prior to obesity, and sensory nerve desensitization by capsaicin improves oral glucose tolerance in obese Zucker rats. Eur J Endocrinol. 2005;153(6):963-969. doi: https://doi.org/10.1530/eje.1.02046
53. Vlaeminck-Guillem V, D’Herbomez M, Pigny P, et al. Pseudohypoparathyroidism Ia and hypercalcitoninemia. J Clin Endocrinol Metab. 2001. doi: https://doi.org/10.1210/jcem.86.7.7690
54. McMullan P, Maye P, Yang Q, Rowe DW, Germain-Lee EL. Parental Origin of Gsα Inactivation Differentially Affects Bone Remodeling in a Mouse Model of Albright Hereditary Osteodystrophy. JBMR Plus. 2021;6(1):e10570. doi: https://doi.org/10.1002/jbm4.10570
55. Thiele S, de Sanctis L, Werner R, Grotzinger J, Aydin C, et al. Functional characterization of GNAS mutations found in patients with pseudohypoparathyroidism type Ic defines a new subgroup of pseudohypoparathyroidism affecting selectively Gsalphareceptor interaction. Human Mutation. 2011;32:653–660. doi: https://doi.org/10.1002/humu.21489
56. Linglart A, Gensure RC, Olney RC, Jüppner H, Bastepe M. A novel STX16 deletion in autosomal dominant pseudohypoparathyroidism type 1b redefines the boundaries of a cis-acting imprinting control element of GNAS. Am J Hum Genet. 2005;76:804-814
Supplementary files
|
1. Figure 1: Phenotypic features in a boy with PHP 1a: A — Brachydactyly and subcutaneous calcinates (radiograph of hand and wrist); B — Moon shaped face, morbid obesity. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(994KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Variant NM_000516.7(GNAS):c.586-18_591del A. Electrophoregrams of the proband and his parents. B. IGV (graphical browser) plot of the deletion [28]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(1MB)
|
Indexing metadata ▾ |
|
3. Figure 3: Phenotypic features in a girl with PHP Ia: A. Brachydactyly (wrist hand radiograph). B. Subcutaneous calcinates. C. Moon-shaped face, morbid obesity. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(1MB)
|
Indexing metadata ▾ |
|
4. Figure 4: Variant NM_000516.7(GNAS):c.201del, (p.Phe68LeufsTer32) identified in the proband and her mother. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(898KB)
|
Indexing metadata ▾ |
Review
For citations:
Kopytina D.A., Vasyukova O.V., Salakhov R.R., Okorokov P.L., Kopytina E.V., Nagaeva E.V., Khusainova R.I., Minniakhmetov I.R., Popov S.V., Bezlepkina O.B., Mokrysheva N.G. Identification of novel pathogenic variants in the GNAS gene in children with morbid obesity and pseudohypoparathyroidism. Obesity and metabolism. 2024;21(4):412-424. (In Russ.) https://doi.org/10.14341/omet13169

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).