Preview

Obesity and metabolism

Advanced search

Nutrient molecules affecting the white-to-beige adipose tissue transition

https://doi.org/10.14341/omet13070

Abstract

Obesity is one of the most important health problems. Body weight can be controlled through a combination of a healthy diet and physical activity, but hypertrophic obesity is often complicated by other comorbidities such as type 2 diabetes mellitus (T2DM), cardiovascular disease, hypertension and various forms of arthritis. If intense physical activity is contraindicated for patients, then alternative approaches to combat obesity can be developed. The discovery of beige adipocytes in white adipose tissue has attracted attention to their use as a target for therapy. There are molecules of various origin that are capable of modulating the formation of beige adipocytes by interacting with critical signaling cascades, leading to increased thermogenesis. One such approach would be to stimulate the transition of white adipose tissue cells into more catabolically active beige cells using nutrients and small molecule drugs.

About the Authors

V. S. Egorova
Division of Medical Biotechnology, Research Center for Translational Medicine, Sirius University of Science and technology
Russian Federation

Vera S. Egorova - PhD, Researcher.

Sirius

Researcher ID IWD-9182-2023; Scopus Author ID 57195327345


Competing Interests:

None



D. T. Gurtsieva
Division of Gene Therapy, Research Center for Translational Medicine, Sirius University of Science and technology
Russian Federation

Dzerassa T. Gutrsieva - PhD student, Junior researcher.

Sirius

Researcher ID KSL-9382-2024; Scopus Author ID 58848190600


Competing Interests:

None



A. D. Egorov
https://siriusuniversity.ru/university-in-faces/nauchnii-tsentr-translyatsionnoi-meditsini/aleksandr-dmitrievich-egorov0000-0002-5953-8097
Division of Gene Therapy, Research Center for Translational Medicine, Sirius University of Science and technology
Russian Federation

Alexander D. Egorov - PhD, Leading researcher, group leader.

1 Olympic ave., 354340 Sirius

Researcher ID A-7393-2014; Scopus Author ID 55568681100


Competing Interests:

None



References

1. Becher T, Palanisamy S, Kramer DJ, et al. Brown adipose tissue is associated with cardiometabolic health. Nat Med. 2021;27(1):58-65. doi: https://doi.org/10.1038/s41591-020-1126-7

2. Wibmer AG, Becher T, Eljalby M, et al. Brown adipose tissue is associated with healthier body fat distribution and metabolic benefits independent of regional adiposity. Cell Reports Med. 2021;2(7):100332. doi: https://doi.org/10.1016/j.xcrm.2021.100332

3. Pugliese G, Liccardi A, Graziadio C, Barrea L, Muscogiuri G, Colao A. Obesity and infectious diseases: pathophysiology and epidemiology of a double pandemic condition. Int J Obes. 2022;46(3):449-465. doi: https://doi.org/10.1038/s41366-021-01035-6

4. de Resende Guimarães MFB, Rodrigues CEM, Gomes KWP, et al. High prevalence of obesity in rheumatoid arthritis patients: association with disease activity, hypertension, dyslipidemia and diabetes, a multi-center study. Adv Rheumatol. 2019;59(1):44. doi: https://doi.org/10.1186/s42358-019-0089-1

5. Cinti S, Frederich RC, Zingaretti MC, De Matteis R, Flier JS, Lowell BB. Immunohistochemical localization of leptin and uncoupling protein in white and brown adipose tissue. Endocrinology. 1997;138(2):797-804. doi: https://doi.org/10.1210/endo.138.2.4908

6. Wu J, Boström P, Sparks LM, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012. doi: https://doi.org/10.1016/j.cell.2012.05.016

7. Harms M, Seale P. Brown and beige fat: Development, function and therapeutic potential. Nat Med. 2013. doi: https://doi.org/10.1038/nm.3361

8. Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest. 2011;121(1):96-105. doi: https://doi.org/10.1172/JCI44271

9. Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol. 2014;10(1):24-36. doi: https://doi.org/10.1038/nrendo.2013.204

10. Tu WZ, Fu YB, Xie X. RepSox, a small molecule inhibitor of the TGFβ receptor, induces brown adipogenesis and browning of white adipocytes. Acta Pharmacol Sin. 2019;40(12):1523-1531. doi: https://doi.org/10.1038/s41401-019-0264-2

11. Haynes BA, Yang LF, Huyck RW, Lehrer EJ, et al. Endothelial-to-Mesenchymal Transition in Human Adipose Tissue Vasculature Alters the Particulate Secretome and Induces Endothelial Dysfunction. Arterioscler Thromb Vasc Biol. 2019;39(10):2168-2191. doi: https://doi.org/10.1161/ATVBAHA.119.312826

12. Nie B, Nie T, Hui X, Gu P, Mao L, et al. Brown Adipogenic Reprogramming Induced by a Small Molecule. Cell Rep. 2017;18(3):624-635. doi: https://doi.org/10.1016/j.celrep.2016.12.062

13. Nedergaard J, von Essen G, Cannon B. Brown adipose tissue: can it keep us slim? A discussion of the evidence for and against the existence of diet-induced thermogenesis in mice and men. Philos Trans R Soc Lond B Biol Sci. 2023;378(1888):20220220. doi: https://doi.org/10.1098/rstb.2022.0220

14. Hu S, Wang L, Yang D, Li L, Togo J, et al. Dietary Fat, but Not Protein or Carbohydrate, Regulates Energy Intake and Causes Adiposity in Mice. Cell Metab. 2018;28(3):415-431.e4. doi: https://doi.org/10.1016/j.cmet.2018.06.010

15. Kliewer SA, Umesono K, Noonan DJ, et al. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature. 1992;358(6389):771-774. doi: https://doi.org/10.1038/358771a

16. Ohno H, Shinoda K, Spiegelman BM, Kajimura S. PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 2012;15(3):395-404. doi: https://doi.org/10.1016/j.cmet.2012.01.019

17. Kroon T, Harms M, Maurer S, Bonnet L, Alexandersson I, et al. PPARγ and PPARα synergize to induce robust browning of white fat in vivo. Mol Metab. 2020;36:100964. doi: https://doi.org/10.1016/j.molmet.2020.02.007

18. Lee SM, Moon J, Cho Y, Chung JH, Shin MJ. Quercetin up-regulates expressions of peroxisome proliferator-activated receptor γ, liver X receptor α, and ATP binding cassette transporter A1 genes and increases cholesterol efflux in human macrophage cell line. Nutr Res. 2013;33(2):136-43. doi: https://doi.org/10.1016/j.nutres.2012.11.010

19. Beekmann K, Rubió L, de Haan LH, Actis-Goretta L, van der Burg B, et al. The effect of quercetin and kaempferol aglycones and glucuronides on peroxisome proliferator-activated receptor-gamma (PPAR-γ). Food Funct. 2015;6(4):1098-107. doi: https://doi.org/10.1039/c5fo00076a

20. Yang CM, Lu IH, Chen HY, Hu ML. Lycopene inhibits the proliferation of androgen-dependent human prostate tumor cells through activation of PPARγ-LXRα-ABCA1 pathway. J Nutr Biochem. 2012;23(1):8-17. doi: https://doi.org/10.1016/j.jnutbio.2010.10.006

21. Selim MA, Mosaad SM, El-Sayed NM. Lycopene protects against Bisphenol A induced toxicity on the submandibular salivary glands via the upregulation of PPAR-γ and modulation of Wnt/β-catenin signaling. Int Immunopharmacol. 2022;112:109293. doi: https://doi.org/10.1016/j.intimp.2022.109293

22. Divakaran SJ, Srivastava S, Jahagirdar A, Rajendran R, et al. Sesaminol induces brown and beige adipocyte formation through suppression of myogenic program. FASEB J. 2020;34(5):6854-6870. doi: https://doi.org/10.1096/fj.201902124R

23. Fedorenko A, Lishko PV, Kirichok Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell. 2012;151(2):400-13. doi: https://doi.org/10.1016/j.cell.2012.09.010

24. Peng WQ, Xiao G, Li BY, Guo YY, Guo L, Tang QQ. l-Theanine Activates the Browning of White Adipose Tissue Through the AMPK/α-Ketoglutarate/Prdm16 Axis and Ameliorates Diet-Induced Obesity in Mice. Diabetes. 2021;70(7):1458-1472. doi: https://doi.org/10.2337/db20-1210

25. Kalupahana NS, Claycombe K, Newman SJ, Stewart T, et al. Eicosapentaenoic acid prevents and reverses insulin resistance in high-fat diet-induced obese mice via modulation of adipose tissue inflammation. J Nutr. 2010;140(11):1915-1922. doi: https://doi.org/10.3945/jn.110.125732

26. Pahlavani M, Razafimanjato F, Ramalingam L, Kalupahana NS, Moussa H, Scoggin S, Moustaid-Moussa N. Eicosapentaenoic acid regulates brown adipose tissue metabolism in high-fat-fed mice and in clonal brown adipocytes. J Nutr Biochem. 2017;39:101-109. doi: https://doi.org/10.1016/j.jnutbio.2016.08.012

27. Miller EK, Pahlavani M, Ramalingam L, Scoggin S, Moustaid-Moussa N. Uncoupling protein 1-independent effects of eicosapentaenoic acid in brown adipose tissue of diet-induced obese female mice. J Nutr Biochem. 2021;98:108819. doi: https://doi.org/10.1016/j.jnutbio.2021.108819

28. Zu Y, Pahlavani M, Ramalingam L, Jayarathne S, Andrade J, et al. Temperature-Dependent Effects of Eicosapentaenoic Acid (EPA) on Browning of Subcutaneous Adipose Tissue in UCP1 Knockout Male Mice. Int J Mol Sci. 2023;24(10):8708. doi: https://doi.org/10.3390/ijms24108708

29. Liu X, Zhang Y, Chu Y, Zhao X, Mao L, Zhao S, Lin S, et al. The natural compound rutaecarpine promotes white adipocyte browning through activation of the AMPK-PRDM16 axis. Biochem Biophys Res Commun. 2021;545:189-194. doi: https://doi.org/10.1016/j.bbrc.2021.01.080

30. Imran KM, Yoon D, Kim YS. A pivotal role of AMPK signaling in medicarpin-mediated formation of brown and beige. Biofactors. 2018;44(2):168-179. doi: https://doi.org/10.1002/biof.1392

31. Sugiura C, Zheng G, Liu L, Sayama K. Catechins and Caffeine Promote Lipid Metabolism and Heat Production Through the Transformation of Differentiated 3T3‐L1 Adipocytes from White to Beige Adipocytes. J Food Sci. 2020;85:192–200. doi: https://doi.org/10.1111/1750-3841.14811

32. Velickovic K, Wayne D, Leija HAL, Bloor I, Morris DE, et al. Caffeine Exposure Induces Browning Features in Adipose Tissue in Vitro and in Vivo. Sci Rep. 2019;9:9104. doi: https://doi.org/10.1038/s41598-019-45540-1

33. Jang YJ, Koo HJ, Sohn EH, Kang SC, Rhee DK, Pyo S. Theobromine Inhibits Differentiation of 3T3-L1 Cells during the Early Stage of Adipogenesis via AMPK and MAPK Signaling Pathways. Food Funct. 2015;6:2365–2374. doi: https://doi.org/10.1039/C5FO00397K

34. Jang MH, Mukherjee S, Choi MJ, Kang NH, Pham HG, Yun JW. Theobromine Alleviates Diet-Induced Obesity in Mice via Phosphodiesterase-4 Inhibition. Eur J Nutr. 2020;59:3503–3516. doi: https://doi.org/10.1007/s00394-020-02184-6

35. Wang Q, Hu GL, Qiu MH, Cao J, Xiong WY. Coffee, Tea, and Cocoa in Obesity Prevention: Mechanisms of Action and Future Prospects. Curr Res Food Sci. 2024;8:100741. doi: https://doi.org/10.1016/j.crfs.2024.100741

36. Lee SG, Parks JS, Kang HW. Quercetin, a functional compound of onion peel, remodels white adipocytes to brown-like adipocytes. J Nutr Biochem. 2017;42:62–71. doi: https://doi.org/10.1016/j.jnutbio.2016.12.018

37. Jin T, Zhang Y, Botchway BOA, Huang M, Lu Q, Liu X. Quercetin activates the Sestrin2/AMPK/SIRT1 axis to improve amyotrophic lateral sclerosis. Biomed Pharmacother. 2023;161:114515. doi: https://doi.org/10.1016/j.biopha.2023.114515

38. Wang S, Wang X, Ye Z, Xu C, Zhang M, Ruan B, Wei M, Jiang Y, Zhang Y, Wang L, Lei X, Lu Z. Curcumin promotes browning of white adipose tissue in a norepinephrine-dependent way. Biochem Biophys Res Commun. 2015;466(2):247-53. doi: https://doi.org/10.1016/j.bbrc.2015.09.018

39. Lone J, Choi JH, Kim SW, Yun JW. Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes. J Nutr Biochem. 2016;27:193-202. doi: https://doi.org/10.1016/j.jnutbio.2015.09.006

40. Song Z, Revelo X, Shao W, Tian L, Zeng K, Lei H, et al. Dietary Curcumin Intervention Targets Mouse White Adipose Tissue Inflammation and Brown Adipose Tissue UCP1 Expression. Obesity (Silver Spring). 2018;26(3):547-558. doi: https://doi.org/10.1002/oby.22110

41. Aloe L, Leon A, Levi-Montalcini R. A proposed autacoid mechanism controlling mastocyte behaviour. Agents Actions. 1993;39:C145-C147. doi: https://doi.org/10.1007/BF01972748

42. Petrosino S, Di Marzo V. The pharmacology of palmitoylethanolamide and first data on the therapeutic efficacy of some of its new formulations. Br J Pharmacol. 2017;174:1349–1365. doi: https://doi.org/10.1111/bph.13580

43. Clayton P, Hill M, Bogoda N, Subah S, Venkatesh R. Palmitoylethanolamide: A Natural Compound for Health Management. Int J Mol Sci. 2021;22(10):5305. doi: https://doi.org/10.3390/ijms22105305

44. Annunziata C, Pirozzi C, Lama A, Senzacqua M, Comella F, et al. Palmitoylethanolamide Promotes White-to-Beige Conversion and Metabolic Reprogramming of Adipocytes: Contribution of PPAR-α. Pharmaceutics. 2022;14(2):338. doi: https://doi.org/10.3390/pharmaceutics14020338


Supplementary files

1. Figure 1. Influence of various factors on the conversion of white adipose tissue to beige adipose
Subject
Type Исследовательские инструменты
View (271KB)    
Indexing metadata ▾

Review

For citations:


Egorova V.S., Gurtsieva D.T., Egorov A.D. Nutrient molecules affecting the white-to-beige adipose tissue transition. Obesity and metabolism. 2024;21(3):295-301. (In Russ.) https://doi.org/10.14341/omet13070

Views: 650


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)