Search for germinal mutations in insulin-producing pancreatic tumors
https://doi.org/10.14341/omet13068
Abstract
BACKGROUND: It is known that insulinoma in approximately 5% of cases is associated with multiple endocrine neoplasia type 1 syndrome (MEN1), in which the prognosis and management tactics of patients have been developed in detail. The diagnosis of MEN1 often does not require genetic confirmation, since the syndrome has a typical clinical picture. At the same time, a combination of this tumor with other hereditary syndromes is found in the literature, which are characterized by the presence of malignant neoplasms of various localizations, primary multiple lesions, hormonal and other disorders. Thus, it is relevant to search for the genetic causes that cause the development of insulinoma, in addition to MEN1.
AIM: to evaluate the frequency of detection of genetic causes of the development of insulin-producing tumors of the pancreas, in addition to MEN1; to analyze the phenotypic characteristics of patients with such tumors.
MATERIALS AND METHODS: Based on the analysis of literature for the period up to 2020, a panel has been developed that includes coding regions of 10 genes (MEN1, VHL, TSC1, TSC2, KRAS, YY1, CDKN2A, MLH1, ADCY1, CACNA2D2) involved in the development of insulinoma. In 32 patients diagnosed with insulinoma, verified by pathomorphological examination, with the absence of clinical and/or genetic data indicating MEN1 syndrome, a panel of genes was sequenced with subsequent analysis of the identified genetic variants and phenotypic data obtained from the medical records of patients. In one patient, an additional molecular genetic study of the «Endom» panel was performed, revealing genetic variants of coding regions of 377 genes associated with endocrine diseases.
RESULTS: In 8 patients (25%, 95% CI (11%; 43%)), 9 variants of mutations were identified that were not classified as benign, at that two mutations in the TSC2 gene were detected in one patient. Frequencies of genetic variants: TSC2 — 13%, 95% CI (4%; 29%), MEN1 — 6% (1%; 21%), MLH1 — 3% (0%;16%), CDKN2A/P16INK4A — 3% (0%;16%). When comparing patients with the identified mutation, with the exception of benign (n=8), and patients without mutation or with a benign mutation (n=24), there were no differences in the Grade (degree of differentiation), Ki67 proliferation index, frequency of concomitant tumors, burdened history, multiple pancreatic lesions or recurrence of insulinoma, however, patients with germinal mutation were found at the level of statistical trend to be younger at the manifestation of insulinoma and to have bigger tumors. In a patient who underwent an additional molecular genetic study using the new «Endome» panel, previously undescribed gene variants (APC and KIF1B) associated with various sporadic tumors, including endocrine ones, were identified.
CONCLUSION: A panel of 10 genes has been developed, mutations of which are associated with insulinoma. A relatively high incidence of genetically determined insulinoma was determined (25% of cases), in half of cases — against the background of tuberous sclerosis. We consider it relevant to evaluate the effectiveness of genetic testing for patients with insulinoma. We believe that, first of all, patients with a high risk of hereditary pathology should be examined: with the manifestation of the disease at a young age and with a large tumor. The identification of a genetic mutation will make it possible to determine the prognosis of the disease, optimize the monitoring algorithm in order to timely identify concomitant diseases-components of the hereditary syndrome, and conduct genetic counseling of the family.
About the Authors
M. Yu. YukinaRussian Federation
Marina Yu. Yukina - MD, PhD; Researcher ID: P-5181-2015; Scopus Author ID: 57109367700
11, Dm. Ulyanova street, 117036 Moscow
Competing Interests:
Остальные авторы статьи заявляют об отсутствии явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
E. A. Troshina
Russian Federation
Ekaterina A. Troshina - MD, PhD, Professor.
Moscow
Competing Interests:
Работа выполнена в соавторстве с членами редакционной коллегии журнала «Ожирение и метаболизм» Трошиной Е.А., Мокрышевой Н.Г.
N. F. Nuralieva
Russian Federation
Nurana F. Nuralieva – MD.
Moscow
Competing Interests:
Остальные авторы статьи заявляют об отсутствии явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
S. V. Popov
Russian Federation
Sergey V. Popov - PhD in biology.
Moscow
Competing Interests:
Остальные авторы статьи заявляют об отсутствии явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
O. Yu. Rebrova
Russian Federation
Olga Yu. Rebrova - MD, PhD.
Moscow
Competing Interests:
Остальные авторы статьи заявляют об отсутствии явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
N. G. Mokrysheva
Russian Federation
Natalia G. Mokrysheva - MD, PhD, Professor.
Moscow
Competing Interests:
Работа выполнена в соавторстве с членами редакционной коллегии журнала «Ожирение и метаболизм» Трошиной Е.А., Мокрышевой Н.Г.
References
1. Davì MV, Boninsegna L, Dalle Carbonare L, et al. Presentation and outcome of pancreaticoduodenal endocrine tumors in multiple endocrine neoplasia type 1 syndrome. Neuroendocrinology. 2011;94(1):58-65. doi: https://doi.org/10.1159/000326164
2. Marini F, Falchetti A, Monte F Del, et al. Multiple endocrine neoplasia type 1. Orphanet J Rare Dis. 2006;1(1):38. doi: https://doi.org/10.1186/1750-1172-1-38
3. Vantyghem M-C, Kottler M-L. Endocrinologie. Ann Endocrinol (Paris). 2007;68(1):1. doi: https://doi.org/10.1016/j.ando.2007.01.003
4. Online Mendelian Inheritance in Man [Internet]. An online catalog of human genes and genetic disorders [cited 23.12.2023]. Available from: https://www.omim.org/
5. Jensen RT, Berna MJ, Bingham DB, Norton JA. Inherited pancreatic endocrine tumor syndromes: advances in molecular pathogenesis, diagnosis, management, and controversies. Cancer. 2008;113(7):1807-1843. doi: https://doi.org/10.1002/cncr.23648
6. Binderup MLM, Galanakis M, Budtz-Jørgensen E, et al. Prevalence, birth incidence, and penetrance of von Hippel–Lindau disease (vHL) in Denmark. Eur J Hum Genet. 2017;25(3):301-307. doi: https://doi.org/10.1038/ejhg.2016.173
7. The National Center for Biotechnology Information [Internet]. Available from: https://www.ncbi.nlm.nih.gov/gene/7428#general-protein-info
8. Binkovitz LA, Johnson CD, Stephens DH. Islet cell tumors in von Hippel-Lindau disease: increased prevalence and relationship to the multiple endocrine neoplasias. Am J Roentgenol. 1990;155(3):501-505. doi: https://doi.org/10.2214/ajr.155.3.1974734
9. Mikhail MI, Singh AK. Von Hippel Lindau Syndrome. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020.
10. Vezzosi D, Bennet A, Maiza JC, et al. Diagnosis and Treatment of Insulinomas in the Adults. Basic and Clinical Endocrinology Up-toDate. 2011:(155):501-505. doi: https://doi.org/10.5772/17452
11. Kim YH, Jung HL, Yang A, et al. A case of Von Hippel-Lindau disease presented with multiple pancreatic cysts and medullary hemangioblastoma. Clin Pediatr Hematol. 2020;27(1):67-71. doi: https://doi.org/10.15264/cpho.2020.27.1.67
12. Orpha.net [Internet]. The portal for rare diseases and orphan drugs [cited 23.12.2023]. Available from: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=GB&Expert=805
13. Zamora EA, Aeddula NR. Tuberous Sclerosis. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020.
14. Kingswood C, Bolton P, Crawford P, et al. The clinical profile of tuberous sclerosis complex (TSC) in the United Kingdom: A retrospective cohort study in the Clinical Practice Research Datalink (CPRD). Eur J Paediatr Neurol. 2016;20(2):296-308. doi: https://doi.org/10.1016/j.ejpn.2015.11.011
15. Grilli G, Moffa A, Perfetto F, et al. Neuroimaging features of tuberous sclerosis complex and Chiari type I malformation: A rare association. J Pediatr Neurosci. 2018;13(2):224. doi: https://doi.org/10.4103/JPN.JPN_76_17
16. Eledrisi MS, Stuart CA, Alshanti M. Insulinoma in a patient with tuberous sclerosis: is there an association? Endocr Pract. 2002;8(2):109-112. doi: https://doi.org/10.4158/EP.8.2.109
17. Boubaddi NE, Imbert Y, Tissot B, et al. Secreting insulinoma and Bourneville’s tuberous sclerosis. Gastroenterol Clin Biol. 1997;21(4):343.
18. Comninos AN, Yang L, Abbara A, et al. Frequent falls and confusion : recurrent hypoglycemia in a patient with tuberous sclerosis complex. Clin Case Rep. 2018;6(5):904-909. doi: https://doi.org/10.1002/ccr3.1483
19. Gutman A, Leffkowitz M. Tuberous sclerosis associated with spontaneous hypoglycaemia. Br Med J. 1959;2(5159):1065-1068. doi: https://doi.org/10.1136/bmj.2.5159.1065
20. Kang MY, Yeoh J, Pondicherry A, et al. Insulinoma and tuberous sclerosis: A possible mechanistic target of rapamycin (mTOR) pathway abnormality? J Endocr Soc. 2017;1(9):1120-1123. doi: https://doi.org/10.1210/js.2017-00160
21. Kim H, Kerr A, Morehouse H. The association between tuberous sclerosis and insulinoma. AJNR. 1995;16(7):1543-1544.
22. Davoren PM, Epstein MT. Insulinoma complicating tuberous sclerosis. J Neurol Neurosurg Psychiatry. 1992;55(12):1209. doi: https://doi.org/10.1136/jnnp.55.12.1209
23. Al-Saleem T, Wessner LL, Scheithauer BW, et al. Malignant tumors of the kidney, brain, and soft tissues in children and young adults with the tuberous sclerosis complex. Cancer. 1998;83(10):2208-2216. doi: https://doi.org/10.1002/(SICI)10970142(19981115)83:10<2208::AID-CNCR21>3.0.CO;2-K
24. Yapici Z, Dörtcan N, Baykan BB, et al. Neurological aspects of tuberous sclerosis in relation to MRI/MR spectroscopy findings in children with epilepsy. Neurol Res. 2007;29(5):449-454. doi: https://doi.org/10.1179/016164107X163996
25. Saredo AT, Flores A, Giaccaglia S, et al. Association of tuberous sclerosis complex (tsc) and insulinoma in a pediatric patient. ESPE Abstracts [Internet]. 2019;(92):P1-240. Available from: https://abstracts.eurospe.org/hrp/0092/hrp0092p1-240
26. Regazzo D, Gardiman MP, Theodoropoulou M, Scaroni C, Occhi G, Ceccato F. Silent gonadotroph pituitary neuroendocrine tumor in a patient with tuberous sclerosis complex: evaluation of a possible molecular link. Endocrinol Diabetes Metab Case Reports. 2018;2018. doi: https://doi.org/10.1530/EDM-18-0086
27. Yukina MY, Nuralieva NF, Troshina EA. Genetic predictors of insulin-producing pancreatic tumor. Alm Clin Med. 2019;47(2):149-155. (In Russ.). doi: https://doi.org/10.18786/2072-0505-2019-47-019
28. Borson-Chazot F, Cardot-Bauters C, Mirallie É, Pattou F. Insulinoma of genetic aetiology. Ann Endocrinol (Paris). 2013;74(3):200-202. doi: https://doi.org/10.1016/j.ando.2013.05.006
29. U.S. National Library of Medicine [Internet]. Multiple endocrine neoplasia [cited 25.12.2023]. Available from: https://medlineplus.gov/genetics/condition/multiple-endocrine-neoplasia/#frequency
30. Kamilaris CDC, Stratakis CA. Multiple Endocrine Neoplasia Type 1 (MEN1): An update and the significance of early genetic and clinical diagnosis. Front Endocrinol (Lausanne). 2019;(10):1-15. doi: https://doi.org/10.3389/fendo.2019.00339
31. Jensen RT, Cadiot G, Brandi ML, et al. ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms: functional pancreatic endocrine tumor syndromes. Neuroendocrinology. 2012;95(2):98-119. doi: https://doi.org/10.1159/000335591
32. Jyotsna VP, Malik E, Birla S, Sharma A. Novel MEN 1 gene findings in rare sporadic insulinoma—a case control study. BMC Endocr Disord. 2015;15(1):44. doi: https://doi.org/10.1186/s12902-015-0041-2
33. Sakurai A, Yamazaki M, Suzuki S, et al. Clinical features of insulinoma in patients with multiple endocrine neoplasia type 1: analysis of the database of the MEN consortium of Japan. Endocr J. 2012;59(10): 859-866. doi: https://doi.org/10.1507/endocrj.EJ12-0173
34. Kwon EB, Jeong HR, Shim YS, et al. Multiple endocrine neoplasia type 1 presenting as hypoglycemia due to insulinoma. J Korean Med Sci. 2016;31(6):1003-1006. doi: https://doi.org/10.3346/jkms.2016.31.6.1003
35. Akhtar Y, Verardo A, Crane JL. Multiple endocrine neoplasia type 1 presenting with concurrent insulinoma and prolactinoma in early-adolescence. Int J Pediatr Endocrinol. 2018;2018(1):7. doi: https://doi.org/10.1186/s13633-018-0061-6
36. Fabbri HC, Mello MP de, Soardi FC, et al. Long-term followup of an 8-year-old boy with insulinoma as the first manifestation of a familial form of multiple endocrine neoplasia type 1. Arq Bras Endocrinol Metabol. 2010;54(8):754-760. doi: https://doi.org/10.1590/S0004-27302010000800016
37. Goudet P, Dalac A, Le Bras M, et al. MEN1 disease occurring before 21 years old: a 160-patient cohort study from the Groupe d’etude des Tumeurs Endocrines. J Clin Endocrinol Metab. 2015;100(4):1568-1577. doi: https://doi.org/10.1210/jc.2014-3659
38. Vezzosi D, Cardot-Bauters C, Bouscaren N, et al. Long-term results of the surgical management of insulinoma patients with MEN1: a Groupe d’etude des Tumeurs Endocrines (GTE) retrospective study. Eur J Endocrinol. 2015;172(3):309-319. doi: https://doi.org/10.1530/EJE-14-0878
39. Librandi K, Grimaldi S, Catalano S, et al. Insulinoma in pediatric tuberous sclerosis complex: a case report. Front Pediatr. 2023;(11):1216201. doi: https://doi.org/10.3389/fped.2023.1216201
40. Qahtani Mohammed SAl, Bojal Shoukat A, Alqarzaie Abdullah A, Alqahtani Abdulaziz A. Insulinoma in tuberous sclerosis: An entity not to be missed. Saudi Med J. 2021;42(3):332-337. doi: https://doi.org/10.15537/smj.2021.42.3.20200490
41. Le Berre J-P, Bey Boeglin M, Duverger V, et al. Seizure and Bourneville tuberous sclerosis: think about insulinoma. Rev Med Interne. 2009;30(2):179-80. doi: https://doi.org/10.1016/j.revmed.2008.04.010
42. Piskinpasa H, Dogansen SC, Metin D, et al. Is there a relationship between tuberous sclerosis complex and insulinoma? Acta Endocrinol (Buchar). 2022;18(3):350-354. doi: https://doi.org/10.4183/aeb.2022.350
43. Davidson SI. A Case of tuberous sclerosis with hypoglycemia attacks. Dapim Refuiim. 1960;(19):70-73.
44. Simon J, Pitre J, Chapuis Y, et al. Hypoglycémiechez une patiente atteinte de sclérose tubéreuse de Bourneville. Revue de Méd Interne. 1995;(17):172.
45. Pavelic K, Hrascan R, Kapitanovic S, et al. Molecular genetics of malignant insulinoma. Anticancer Res. 1996;16(4A):1707-1717.
46. Hrasćan R , Pećina-Slaus N, Martić TN, et al. Analysis of selected genes in neuroendocrine tumours: insulinomas and phaeochromocytomas. J Neuroendocrinol. 2008;20(8):1015-22. doi: https://doi.org/10.1111/j.1365-2826.2008.01755.x
47. Gremer L, Merbitz-Zahradnik T, Dvorsky R, et al. Germline KRAS mutations cause aberrant biochemical and physical properties leading to developmental disorders. Hum Mutat. 2011;32(1):33-43. doi: https://doi.org/10.1002/humu.21377
48. Duerr EM, Chung DC. Molecular genetics of neuroendocrine tumors. Best Pract Res Clin Endocrinol Metab. 2007;21(1):1-14. doi: https://doi.org/10.1016/j.beem.2006.12.001
49. The National Center for Biotechnology Information [Internet]. KRAS proto-oncogene, GTPase [Homo sapiens (human)]. Available from: https://www.ncbi.nlm.nih.gov/gene/3845#general-protein-info
50. The portal for rare diseases and orphan drugs [Internet]. Noonan syndrome. Available from: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=en&Expert=648
51. The portal for rare diseases and orphan drugs [Internet]. Costello syndrome. Available from: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Expert=3071
52. The portal for rare diseases and orphan drugs [Internet]. Cardiofaciocutaneous syndrome. Available from: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=GB&Expert=1340
53. Wang H, Bender A, Wang P, et al. Insights into beta cell regeneration for diabetes via integration of molecular landscapes in human insulinomas. Nat Commun. 2017;8(1): 767. doi: https://doi.org/10.1038/s41467-017-00992-9
54. Irshad K, Jyotsna VP, Agarwal S, et al. T372R mutation status in Yin Yang 1 gene in insulinoma patients. Horm Metab Res. 2017;49(6): 452-456. doi: https://doi.org/10.1055/s-0043-107244
55. Cao Y, Gao Z, Li L, et al. Whole exome sequencing of insulinoma reveals recurrent T372R mutations in YY1. Nat Commun. 2013;4(1):2810. doi: https://doi.org/10.1038/ncomms3810
56. Cromer MK, Choi M, Nelson-Williams C, et al. Neomorphic effects of recurrent somatic mutations in Yin Yang 1 in insulin-producing adenomas. Proc Natl Acad Sci U S A. 2015;112(13):4062-4067. doi: https://doi.org/10.1073/pnas.1503696112
57. Liu J, Shen J-X, Wu H-T, et al. Collagen 1A1 (COL1A1) promotes metastasis of breast cancer and is a potential therapeutic target. Discov Med. 2018;25(139):211-223.
58. Stegh A. CSIG-21. IDH3 promotes glioblastoma growth through regulation of one carbon metabolism. Neuro Oncol. 2017;19(S6):vi54. doi: https://doi.org/10.1093/neuonc/nox168.215
59. Liu CH, Huang ZH, Dong XY, et al. Inhibition of uncoupling protein 2 enhances the radiosensitivity of cervical cancer cells by promoting the production of reactive oxygen species. Oxid Med Cell Longev. 2020;2020(S6):1-13. doi: https://doi.org/10.1155/2020/5135893
60. González-Barroso MM, Giurgea I, Bouillaud F, et al. Mutations in UCP2 in congenital hyperinsulinism reveal a role for regulation of insulin secretion. PLoS One. 2008;3(12):e3850. doi: https://doi.org/10.1371/journal.pone.0003850
61. Santos-Cortez RLP, Lee K, Giese AP, et al. Adenylate cyclase 1 (ADCY1) mutations cause recessive hearing impairment in humans and defects in hair cell function and hearing in zebrafish. Hum Mol Genet. 2014;23(12):3289-3298. doi: https://doi.org/10.1093/hmg/ddu042
62. Pippucci T, Parmeggiani A, Palombo F, et al. A novel null homozygous mutation confirms CACNA2D2 as a gene mutated in epileptic encephalopathy. PLoS One. 2013;8(12):e82154. doi: https://doi.org/10.1371/journal.pone.0082154
63. Bartsch DK, Kersting M, Wild A, et al. Low frequency of p16(INK4a) alterations in insulinomas. Digestion. 2000;62(2-3):171-177. doi: https://doi.org/10.1159/000007810
64. Lubomierski N, Kersting M, Bert T, et al. Tumor suppressor genes in the 9p21 gene cluster are selective targets of inactivation in neuroendocrine gastroenteropancreatic tumors. Cancer Res. 2001;61(15):5905-5910.
65. Jouenne F, de Beauchene IC, Bollaert E, et al. Germline CDKN2A/P16INK4A mutations contribute to genetic determinism of sarcoma. J Med Genet. 2017;54(9):607-612. doi: https://doi.org/10.1136/jmedgenet-2016-104402.
66. Jiao Y, Feng Y , Wang X, et al. Regulation of tumor suppressor gene CDKN2A and encoded p16-INK4a protein by covalent modifications. Biochemistry. 2018;83(11):1289-1298. doi: https://doi.org/10.1134/S0006297918110019
67. Borg A, Sandberg T, Nilsson K, et al. High frequency of multiple melanomas and breast and pancreas carcinomas in CDKN2A mutation-positive melanoma families. J Natl Cancer Inst. 2000;92(15):1260-1266. doi: https://doi.org/10.1093/jnci/92.15.1260
68. Bartsch DK, Sina-Frey M, Lang S, et al. CDKN2A germline mutations in familial pancreatic cancer. Ann Surg. 2002;236(6):730-737. doi: https://doi.org/10.1097/00000658-200212000-00005
69. Chan SH, Lim WK, Michalski ST, et al. Germline hemizygous deletion of CDKN2A–CDKN2B locus in a patient presenting with Li–Fraumeni syndrome. npj Genomic Med. 2016;1(1):16015. doi: https://doi.org/10.1038/npjgenmed.2016.15
70. Mei M, Deng D, Liu T-H, et al. Clinical implications of microsatellite instability and MLH1 gene inactivation in sporadic insulinomas. J Clin Endocrinol Metab. 2009;94(9):3448-3457. doi: https://doi.org/10.1210/jc.2009-0173
71. Momma T, Gonda K, Akama Y, et al. MLH1 germline mutation associated with Lynch syndrome in a family followed for more than 45 years. BMC Med Genet. 2019;20(1):67. doi: https://doi.org/10.1186/s12881-019-0792-0
72. Harkness EF, Barrow E, Newton K, et al. Lynch syndrome caused by MLH1 mutations is associated with an increased risk of breast cancer: a cohort study. J Med Genet. 2015;52(8):553-556. doi: https://doi.org/10.1136/jmedgenet-2015-103216
73. Online Mendelian Inheritance in Man [Internet]. An online catalog of human genes and genetic disorders [cited 25.12.2023]. Available from: https://www.omim.org/entry/190070
74. KIF1B kinesin family member 1B [Homo sapiens (human) ]. Available from: https://www.ncbi.nlm.nih.gov/gene/23095#general-protein-info
75. Fedorova VS, Smochilin AG, Kulyakhtin AI, et al. Charcot–Marie–Toots disease: description of 2 clinical cases of the disease in members of the same family (father and daughter). Sci Notes Pavlov Univ. 2020;27(2):63-71. (In Russ.). doi: https://doi.org/10.24884/1607-4181-2020-27-2-63-71
76. Evenepoel L, Helaers R, Vroonen L, et al. KIF1B and NF1 are the most frequently mutated genes in paraganglioma and pheochromocytoma tumors. Endocr Relat Cancer. 2017;24(8):L57-L61. doi: https://doi.org/10.1530/ERC-17-0061
77. Munirajan AK, Ando K, Mukai A, et al. KIF1Bβ functions as a haploinsufficient tumor suppressor gene mapped to chromosome 1p36.2 by inducing apoptotic cell death. J Biol Chem. 2008;283(36):24426-24434. doi: https://doi.org/10.1074/jbc.M802316200
78. APC regulator of WNT signaling pathway. Available from: https://www.ncbi.nlm.nih.gov/gene/324
79. FAMILIAL ADENOMATOUS POLYPOSIS 1; FAP1. Available from: https://omim.org/entry/175100
80. Fodde R. The APC gene in colorectal cancer. Eur J Cancer. 2002;38(7):867-871. doi: https://doi.org/10.1016/s0959-8049(02)00040-0
81. Arnold CN, Sosnowski A, Schmitt-Gräff A, et al. Analysis of molecular pathways in sporadic neuroendocrine tumors of the gastroentero-pancreatic system. Int J Cancer. 2007;120(10):2157-2164. doi: https://doi.org/10.1002/ijc.22569
82. Davì MV, Boninsegna L, Dalle Carbonare L, et al. Presentation and outcome of pancreaticoduodenal endocrine tumors in multiple endocrine neoplasia type 1 syndrome. Neuroendocrinology. 2011;94(1):58-65. doi: https://doi.org/10.1159/000326164
83. Li J, Zeng L, Yang Y, et al. Multiple endocrine neoplasia type 1 presenting multiple lipomas and hypoglycemia onset. Am J Case Rep. 2012;(13):224-229. doi: https://doi.org/10.12659/AJCR.883383
84. Lee M, Pellegata NS. Multiple endocrine neoplasia type 4. Front Horm Res. 2013;(41):63-78. doi: https://doi.org/10.1159/000345670
85. Şimşir IY, Ertan Y, Sözbilen M, et al. Multiple endocrine neoplasia type 4 (MEN4) syndrome. J Clin Res Pediatr Endocrinol. 2015;7(S2):77-92
86. Thakker RV. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol Cell Endocrinol. 2014;386(1-2):2-15. doi: https://doi.org/10.1016/j.mce.2013.08.002
87. Brandi ML, Agarwal SK, Perrier ND, et al. Multiple endocrine neoplasia type 1: Latest insights. Endocr Rev. 2021;42(2):133-170. doi: https://doi.org/10.1210/endrev/bnaa031
88. Nance ME, Verma R, DeClue C, et al. Imaging and diagnostic challenges in a patient with refractory hypoglycemia caused by insulinomas related to multiple endocrine neoplasia type 1. Cureus. 2020;12(5):e8208. doi: https://doi.org/10.7759/cureus.8208
89. Uraki S, Ariyasu H, Doi A, et al. Atypical pituitary adenoma with MEN1 somatic mutation associated with abnormalities of DNA mismatch repair genes; MLH1 germline mutation and MSH6 somatic mutation. Endocr J. 2017;64(9):895-906. doi: https://doi.org/10.1507/endocrj.EJ17-0036
Review
For citations:
Yukina M.Yu., Troshina E.A., Nuralieva N.F., Popov S.V., Rebrova O.Yu., Mokrysheva N.G. Search for germinal mutations in insulin-producing pancreatic tumors. Obesity and metabolism. 2023;20(4):338-354. (In Russ.) https://doi.org/10.14341/omet13068

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).