Congenital disorders of glucose metabolism in adults with nondiabetic hypoglycemia
https://doi.org/10.14341/omet13052
Abstract
BACKGROUND: Recent clinical descriptions have shown that in adult patients, the cause of nondiabetic hypoglycemia (NDH) may be various genetically determined disorders of glucose metabolism or insulin synthesis/bioavailability. In this connection, in adult patients with NDH of unclear genesis, it is important to conduct a genetic study in order to search for mutations in genes associated with congenital disorders of glucose metabolism (CDGM).
AIM: To evaluate the effectiveness of genetic testing to exclude CDGM in adult patients with idiopathic NDH.
MATERIALS AND METHODS: Based on the analysis of the literature, a targeted panel has been developed, including 30 genes, mutations in which are associated with the following groups of diseases: 1) congenital hyperinsulinism (KCNJ11, ABCC8, GLUD1, HADH, UCP2, HNF4A, HNF1A, GCK, INSR, SLC16A1); 2) glycogen storage diseases (AGL); 3) other carbohydrate metabolism disorders (ALDOB, FBP1); 4) glycosylation defects (PMM2, ALG3, PGM1, MPI); 4) defects in fatty acid oxidation (ACADM, ETFA, ETFB, ETFDH, FLAD1, SLC25A32, SLC52A1, SLC52A2, SLC52A3); 5) disorders of ketone body metabolism (CPT1A, CPT2, HMGCL); 6) mitochondrial disorders (DLD). Twenty nine patients (n=29: with idiopathic NDH n=17 and with insulinoma n=12) aged 19 to 66 years underwent a genetic study using this custom panel.
RESULTS: As a result of the examination 12 genetic variants (all heterozygous) were identified in 8 patients with idiopathic NDH (47%, 95% CI (23%; 72%)), at that two mutations were detected in three patients: in the genes AGL and HMGCL; ACADM and FLAD1, respectively; and one patient had three mutations: one mutation in the ETFA gene and two mutations in the ABCC8 gene. Frequencies of genetic variants: AGL — 18%, 95% CI (4%; 43%), ETFA — 12% (1%; 36%), HMGCL — 6% (0%; 29%), ALDOB — 6% (0%; 29%), CPT1A — 6% (0%; 29%), ABCC8 — 6% (0%; 29%), ACADM — 6% (0%; 29%), FLAD1 — 6% (0%; 29%). 5 genetic variants (all heterozygous) were identified in 5 patients with insulinoma (42%, 95% ДИ (15%; 72%)). Frequencies of genetic variants: ABCC8 — 17%, 95% CI (2%; 48%), HNF1A — 8% (0%; 38%), ETFDH — 8% (0%; 38%), MPI — 8% (0%; 38%). We did not include benign variants in this analysis. At the same time, clinically significant variants were identified only in one patient from the group with idiopathic NDH (6%, 95% CI (0%; 29%)) in the ABCC8 gene and in one patient from the group with insulinoma (8%, 95% CI (0%; 38%)) in the same gene congenital hyperinsulinism (CHI).
CONCLUSION: A panel of 30 genes has been developed, variants of which are associated with a CDGM. The results of our study confirm the possibility of detecting CDGM in adulthood, in particular CHI, and indicate the need for genetic testing, primarily in patients with idiopathic NDH.
About the Authors
M. Yu. YukinaRussian Federation
Marina Yu. Yukina, MD, PhD
Researcher ID: P-5181-2015;
Scopus Author ID: 57109367700
11 Dm. Ulyanova street, 117036 Moscow
E. A. Troshina
Russian Federation
Ekaterina A. Troshina, MD, PhD, Professor
Moscow
N. F. Nuralieva
Russian Federation
Nurana F. Nuralieva, MD, PhD
Moscow
S. V. Popov
Russian Federation
Sergey V. Popov, PhD in biology
Moscow
N. G. Mokrysheva
Russian Federation
Natalia G. Mokrysheva, MD, PhD, Professor
Moscow
References
1. Nirantharakumar K, Marshall T, Hodson J, et al. Hypoglycemia in Non-Diabetic In-Patients: Clinical or Criminal? Sesti G, ed. PLoS One. 2012;7(7):e40384. doi: https://doi.org/10.1371/journal.pone.0040384
2. Юкина М.Ю., Нуралиева Н.Ф., Трошина Е.А., и др. Гипогликемический синдром (инсулинома): патогенез, этиология, лабораторная диагностика. Обзор литературы (часть 1) // Проблемы эндокринологии. — 2017. — Т. 63. — №4. — С. 245-256
3. Меликян М.А., Губаева Д.Н., Болмасова А.В., и др. Диагностика и лечение врожденного гиперинсулинизма у детей. Клинические рекомендации. Москва, 2021
4. McGlacken-Byrne SM, Mohammad JK, Conlon N, et al. Clinical and genetic heterogeneity of HNF4A/HNF1A mutations in a multicentre paediatric cohort with hyperinsulinaemic hypoglycaemia. Eur J Endocrinol. 2022;186(4):417-427. doi: https://doi.org/10.1530/EJE-21-0897
5. Casertano A, Rossi A, Fecarotta S, et al. An Overview of Hypoglycemia in Children Including a Comprehensive Practical Diagnostic Flowchart for Clinical Use. Front Endocrinol (Lausanne). 2021. doi: https://doi.org/10.3389/fendo.2021.684011
6. Yau D, Colclough K, Natarajan A, et al. European Journal of Medical Genetics Congenital hyperinsulinism due to mutations in HNF1A. Eur J Med Genet. 2020;63(6):103928. doi: https://doi.org/10.1016/j.ejmg.2020.103928
7. Pinney SE, MacMullen C, Becker S, et al. Clinical characteristics and biochemical mechanisms of congenital hyperinsulinism associated with dominant KATP channel mutations. J Clin Invest. 2008;118(8):2877-86. doi: https://doi.org/10.1172/JCI35414
8. Kapoor RR, Flanagan SE, James CT, et al. Hyperinsulinaemic hypoglycaemia and diabetes mellitus due to dominant ABCC8/KCNJ11 mutations. Diabetologia. 2011;54(10):2575-83. doi: https://doi.org/10.1007/s00125-011-2207-4
9. Gutgold A, Gross DJ, Glaser B, Szalat A. Diagnosis of ABCC8 Congenital Hyperinsulinism of Infancy in a 20-Year-Old Man Evaluated for Factitious Hypoglycemia. J Clin Endocrinol Metab. 2017;102(2):345-349. doi: https://doi.org/10.1210/jc.2016-3254
10. Challis BG, Harris J, Sleigh A, et al. Familial adult onset hyperinsulinism due to an activating glucokinase mutation: Implications for pharmacological glucokinase activation. Clin Endocrinol (Oxf). 2014;81(6):855-861. doi: https://doi.org/10.1111/cen.12517
11. Tran C, Konstantopoulou V, Mecjia M, et al. Hyperinsulinemic hypoglycemia: think of hyperinsulinism/hyperammonemia (HI/HA) syndrome caused by mutations in the GLUD1 gene. J Pediatr Endocrinol Metab. 2015;28(7-8):873-6. doi: https://doi.org/10.1515/jpem-2014-0441
12. Babiker O, Flanagan SE, Ellard S, et al. Protein-induced hyperinsulinaemic hypoglycaemia due to a homozygous HADH mutation in three siblings of a Saudi family. J Pediatr Endocrinol Metab. 2015;28(9-10):1073-7. doi: https://doi.org/10.1515/jpem-2015-0033
13. Ferrara CT, Boodhansingh KE, Paradies E, et al. Novel Hypoglycemia Phenotype in Congenital Hyperinsulinism Due to Dominant Mutations of Uncoupling Protein 2. J Clin Endocrinol Metab. 2017;102(3):942–949. doi: https://doi.org/10.1210/jc.2016-3164
14. Kuroda Y, Iwahashi H, Mineo I, et al. Hyperinsulinemic hypoglycemia syndrome associated with mutations in the human insulin receptor gene: report of two cases. Endocr J. 2015;62(4):353-362. doi: https://doi.org/10.1507/endocrj.EJ14-0547
15. Otonkoski T, Kaminen N, Ustinov J, et al. Physical exerciseinduced hyperinsulinemic hypoglycemia is an autosomal-dominant trait characterized by abnormal pyruvate-induced insulin release. Diabetes. 2003;52(1):199-204. doi: https://doi.org/10.2337/diabetes.52.1.199
16. Kapoor RR, Locke J, Colclough K, et al. Persistent hyperinsulinemic hypoglycemia and maturity-onset diabetes of the young due to heterozygous HNF4A mutations. Diabetes. 2008;57(6):1659-63. doi: https://doi.org/10.2337/db07-1657
17. Stanescu DE, Hughes N, Kaplan B, et al. Novel presentations of congenital hyperinsulinism due to mutations in the MODY genes: HNF1A and HNF4A. J Clin Endocrinol Metab. 2012;97(10):E2026-30. doi: https://doi.org/10.1210/jc.2012-1356
18. Schoser B, Gläser D, Müller-Höcker J. Clinicopathological analysis of the homozygous p.W1327X AGL mutation in glycogen storage disease type 3. Am J Med Genet Part A. 2008;146(22):2911-2915. doi: https://doi.org/10.1002/ajmg.a.32529
19. Feillet F, Steinmann G, Vianey-Saban C, et al. Adult presentation of MCAD deficiency revealed by coma and severe arrythmias. Intensive Care Med. 2003; 29:1594-1597. doi: https://doi.org/10.1007/ s00134-003-1871-3
20. Grünert SC. Clinical and genetical heterogeneity of late-onset multiple acyl-coenzyme A dehydrogenase deficiency. Orphanet J Rare Dis. 2014;9:117. doi: https://doi.org/10.1186/s13023-014-0117-5
21. Ryder B, Tolomeo M, Nochi Z, et al. A Novel Truncating FLAD1 Variant, Causing Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) in an 8-Year-Old Boy. JIMD Rep. 2019:45:37-44. doi: https://doi.org/10.1007/8904_2018_139
22. Al Shamsi B, Al Murshedi F, Al Habsi A, Al-Thihli K. Hypoketotic hypoglycemia without neuromuscular complications in patients with SLC25A32 deficiency. Eur J Hum Genet. 2022;30(8):976-979. doi: https://doi.org/10.1038/s41431-021-00995-7
23. Ho G, Yonezawa A, Masuda S, Inui K, et al. Maternal riboflavin deficiency, resulting in transient neonatal-onset glutaric aciduria Type 2, is caused by a microdeletion in the riboflavin transporter gene GPR172B. Hum Mutat. 2011;32(1):E1976-84. doi: https://doi.org/10.1002/humu.21399
24. https://www.genecards.org/cgi-bin/carddisp.pl?gene=SLC52A1
25. https://clinvarminer.genetics.utah.edu/variants-by-mondo-condition/20678/gene/SLC52A2
26. Yoshimatsu H, Yonezawa A, Yamanishi K, et al. Disruption of Slc52a3 gene causes neonatal lethality with riboflavin deficiency in mice. Sci Rep. 2016:6:27557. doi: https://doi.org/10.1038/srep27557
27. Bischof F, Nägele T, Wanders RJA, Trefz FK, Melms A. 3‐hydroxy‐3‐methylglutaryl‐CoA lyase deficiency in an adult with leukoencephalopathy. Ann Neurol. 2004;56(5):727-730. doi: https://doi.org/10.1002/ana.20280
28. Morales-alvarez MC, Ricardo-silgado ML, Lemus HN, et al. Fructosuria and recurrent hypoglycemia in a patient with a novel c . 1693T > A variant in the 3 ′ untranslated region of the aldolase B gene. SAGE Open Medical Case Reports. 2019;7:1-5. doi: https://doi.org/10.1177/2050313X18823098
29. Yasawy MI, Folsch UR, Schmidt WE, Schwend M. Adult hereditary fructose intolerance. World J Gastroenterol. 2009;15(19):2412-2413
30. Collins SA, Hildes-Ripstein GE, Thompson JR, et al. Neonatal hypoglycemia and the CPT1A P479L variant in term newborns: A retrospective cohort study of Inuit newborns from Kivalliq Nunavut. Paediatr Child Health. 2020;26(4):218-227. doi: https://doi.org/10.1093/pch/pxaa039
31. Deutsch M, Vassilopoulos D, Sevastos N, Papadimitriou A. Severe rhabdomyolysis with hypoglycemia in an adult patient with carnitine palmitoyltransferase II deficiency. European Journal of Internal Medicine. 2008;19:289-291. doi: https://doi.org/10.1016/j.ejim.2007.04.025
32. Douillard C, Mention K, Dobbelaere D, Wemeau J-L, et al. Hypoglycaemia related to inherited metabolic diseases in adults. Orphanet J Rare Dis. 2012;7(1):26. doi: https://doi.org/10.1186/1750-1172-7-26
33. Lu JR, Wang C, Shao LP. A Chinese Adult Patient with Fructose 1,6-bisphosphatase Deficiency. Chin Med J. 2017;130:2009-10. doi: https://doi.org/10.4103/0366-6999.211890
34. Sparks SE, Krasnewich DM, PMM2-CDG (CDGIa). In: Pagon RA, Bird TD, Dolan CR, et al, eds. GeneReviews [Internet]. Seattle: University of Washington, 1993-2017. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1110/
35. de la Morena-Barrio ME, Wypasek E, Owczarek D, et al. MPI-CDG with transient hypoglycosylation and antithrombin deficiency. Haematologica. 2019;104(2):e79-e82. doi: https://doi.org/10.3324/haematol.2018.211326
36. Sun L, Eklund EA, Chung WK, et al. Congenital disorder of glycosylation id presenting with hyperinsulinemic hypoglycemia and islet cell hyperplasia. J Clin Endocrinol Metab. 2005;90(7):4371-5. doi: https://doi.org/10.1210/jc.2005-0250
37. Tegtmeyer LC, Rust S, van Scherpenzeel M, et al. Multiple Phenotypes in Phosphoglucomutase 1 Deficiency. N Engl J Med. 2014;370(6):533-542. doi: https://doi.org/10.1056/NEJMoa1206605
38. Voermans NC, Preisler N, Madsen KL, et al. PGM1 deficiency: Substrate use during exercise and effect of treatment with galactose. Neuromuscul Disord. 2017;27(4):370-376. doi: https://doi.org/10.1016/j.nmd.2017.01.014
39. Alfarsi A, Alfadhel M, Alameer S, et al. The phenotypic spectrum of dihydrolipoamide dehydrogenase deficiency in Saudi Arabia. Mol Genet Metab Rep. 2021:29:100817. doi: https://doi.org/10.1016/j.ymgmr.2021.100817
40. Юкина М.Ю., Нуралиева Н.Ф., Трошина Е.А., и др. Генетически детерминированные причины гипогликемического синдрома у взрослых пациентов без сахарного диабета // Медицинский совет. — 2018. — Т. 4. — С. 66-73. doi: https://doi.org/10.21518/2079
41. Zamanfar D, Abbas S, Morteza H. A case of 3-hydroxy-3-methyl glutaric CoA lyase deficiency in north of Iran descent. International journal of Medical Investigation. 2014;3:140-142
42. Orphanet: the portal for rare diseases and orphan drugs [Internet]. Available from: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=GB&Expert=469
43. OMIM. Online Mendelian Inheritance in Man. An Online Catalog of Human Genes and Genetic Disorders. Available from: https://www.omim.org/
44. Genetics Home Reference. Carnitine palmitoyltransferase I deficiency. Available from: https://ghr.nlm.nih.gov/condition/carnitine-palmitoyltransferase-i-deficiency
45. Wajner M, Amaral AU. Mitochondrial dysfunction in fatty acid oxidation disorders: insights from human and animal studies. Biosci. Rep. 2016;36:e00281. doi: https://doi.org/10.1042/BSR20150240
46. Donato SD, Taroni F. Disorders of Lipid Metabolism. In: Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease (Fifth Edition), Rosenberg RN, Pascual JM, eds. Academic Press. 2015
47. Deschauer M, Vivo DD. Carnitine palmitoyltransferase II deficiency. Neurology Medlink. 2017. Available from: https://www.medlink.com/article/carnitine_palmitoyltransferase_ii_deficiency
48. Mayorandan S, Meyer U, Hartmann H, Das AM. Glycogen storage disease type III: modified Atkins diet improves myopathy. Mayorandan et al. Orphanet Journal of Rare Diseases. 2014;9:196. doi: https://doi.org/10.1186/s13023-014-0196-3
49. Zimmermann A, Rossmann H, Bucerzan S, Grigorescu-Sido P. A Novel Nonsense Mutation of the AGL Gene in a Romanian Patient with Glycogen Storage Disease Type IIIa. Case Reports in Genetics. 2016;2016:8154910. doi: https://doi.org/10.1155/2016/8154910
50. Angelini C. Multiple Acyl-CoA Dehydrogenase Deficiency. In: Genetic Neuromuscular Disorders: A Case-Based Approach. 2014. doi: https://doi.org/10.1007/978-3-319-07500-6_63
51. PhenoDis. Available from: http://mips.helmholtz-muenchen.de/pheno/disease/show/3416
52. Puisac B, Arnedo M, Concepcion M, et al. HMG–CoA Lyase Deficiency. In: Advances in the Study of Genetic Disorders. 2011. doi: https://doi.org/10.5772/20252
53. Yalc¸ınkaya C, Dinc¸er A, Gu¨ndu¨z E, et al. MRI and MRS in HMG-CoA lyase deficiency. Pediatr Neurol. 1999;20:375-380
54. Hegde VS, Sharman T. Hereditary Fructose Intolerance. StatPearls [Internet]. StatPearls Publishing; 2020 Jan- Available from: https://www.ncbi.nlm.nih.gov/books/NBK559102/#article-22816.s1
55. Acidurias O, Disorders UC. Inherited Metabolic Disorders and Stroke Part 2. NEUROLOGICAL REVIEW. 2010;67(2):148-153
56. Dernoncourt A, Bouchereau J, Acquaviva-Bourdain C, et al. Myogenic Disease and Metabolic Acidosis: Consider Multiple Acyl-Coenzyme A Dehydrogenase Deficiency. Case Reports in Critical Care. 2019;2019:1598213. doi: https://doi.org/10.1155/2019/1598213
57. Naher N, Ln N, Sultana S, Matin A, Mhj F. Carnitine Palmitoyl Tranferase Type 1 Deficiency in Fatty acid oxidation disorder: A Case report. J Shaheed Suhrawardy Med Coll. 2014;6(1):38-40
58. Fontaine M, Briand G, Largilliere C, et al. Metabolic studies in a patient with severe carnitine palmitoyltransferase type II deficiency. Clinica Chimica Acta. 1998;273:161-170
59. Bennett MJ, Santani AB. Carnitine Palmitoyltransferase 1A Deficiency. In: GeneReviews® [Internet]. Adam MP, Ardinger HH, Pagon RA, et al, eds. Seattle (WA): University of Washington, Seattle; 1993-2020
60. Sakakibara A, Hashimoto Y, Kawakita R, et al. Diagnosis of congenital hyperinsulinism: Biochemical profiles during hypoglycemia. Pediatr Diabetes. 2018;19(2):259-264. doi: https://doi.org/10.1111/pedi.12548
61. Genetics Home Reference. Congenital hyperinsulinism. Available from: https://ghr.nlm.nih.gov/condition/congenital-hyperinsulinism#:~:text=Congenital%20hyperinsulinism%20affects%20approximately%201,to%201%20in%202%2C500%20newborns
62. Genetics Home Reference. Carnitine palmitoyltransferase II deficiency. Available from: https://ghr.nlm.nih.gov/condition/carnitine-palmitoyltransferase-ii-deficiency#inheritance
63. Kishnani PS, Austin SL, Arn P, Bali DS, et al. Glycogen storage disease type III diagnosis and management guidelines. Genet Med. 2010;12(7):446-463. doi: https://doi.org/10.1097/ GIM.0b013e3181e655b6
64. Matern D, Rinaldo P. Medium-Chain AcylCoenzyme A Dehydrogenase Deficiency. In: Pagon RA, Bird TD, Dolan CR, et al, eds. GeneReviews [Internet]. Seattle: University of Washington, 1993-2017. Available from: https: //www.ncbi.nlm.nih.gov/books/NBK1424/
65. Orphanet: the portal for rare diseases and orphan drugs [Internet]. Available from: http: //www.orpha.net/consor/cgi-bin/OC_Exp. php?Expert=26791.
66. Udhayabanu T, Manole A, Rajeshwari M, et al. Riboflavin Responsive Mitochondrial Dysfunction in Neurodegenerative Diseases. J Clin Med. 2017;6(5):52. doi: https://doi.org/10.3390/jcm6050052
67. Schiff M, Veauville-Merllié A, Su CH, et al. SLC25A32 Mutations and Riboflavin-Responsive Exercise Intolerance. N Engl J Med. 2016;374(8):795-797. doi: https://doi.org/10.1056/NEJMc1513610
68. Izumi R, Suzuki N, Nagata M, et al. A Case of Late Onset Riboflavin-responsive Multiple Acyl-CoA Dehydrogenase Deficiency Manifesting as Recurrent Rhabdomyolysis and Acute Renal Failure. Intern Med. 2011;50(21):2663-2668. doi: https://doi.org/10.2169/internalmedicine.50.5172
69. Hacıhamdioğlu B, Özgürhan G, Çaran B, Meydan-Aksanlı E, Keskin E. Glycogen storage disease type 0 due to a novel frameshift mutation in glycogen synthase 2 (GYS2) gene in a child presenting with fasting hypoglycemia and postprandial hyperglycemia. Turk J Pediatr. 2018;60(5):581-583. doi: https://doi.org/10.24953/turkjped.2018.05.018
70. Aydemir Y, Gürakan F, Temizel İNS, et al. Evaluation of central nervous system in patients with glycogen storage disease type 1a. The Turkish Journal of Pediatrics. 2016;52:12-18.
71. Orphanet: the portal for rare diseases and orphan drugs [Internet]. Available from: http: // www.orpha.net/consor/cgi-bin/OC_Exp. php?lng=EN&Expert=20
72. Morris AAM. Disorders of Ketogenesis and Ketolysis. In: Inborn Metabolic Diseases. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012:217-222. doi: https://doi.org/10.1007/978-3-642-15720-2_14
73. Kishnani PS, Chen YT. Defects in Metabolism of Carbohydrates. In: Kliegman R, Stanton B, Geme StJ, Schor N. Nelson Textbook Of Pediatrics. 20th Edition. Elsevier. 2015:715-737
74. Baker P, Ayres L, Gaughan S, Weisfeld-Adams J. Hereditary Fructose Intolerance. In: Pagon RA, Bird TD, Dolan CR, et al, eds. GeneReviews [Internet]. Seattle: University of Washington, 1993-2017
75. Меликян М.А., Карева М.А. Врожденный гиперинсулинизм: Пособие для врачей. — М.: Практика, 2015. — 24с.
76. Меликян М.А. Врожденный гиперинсулинизм // Проблемы эндокринологии. — 2010. — Т. 56. — №6. — С. 41-47. doi: https://doi.org/10.14341/probl201056641-47
77. Gilis-Januszewska A, Piątkowski J, Skalniak A, et al. Noninsulinoma pancreatogenous hypoglycaemia in adults-- a spotlight on its genetics. Endokrynol Pol. 2015;66(4):344-54. doi: https://doi.org/10.5603/EP.2015.0044
78. Banerjee I, Salomon-Estebanez M, Shah P, et al. Therapies and outcomes of congenital hyperinsulinism-induced hypoglycaemia. Diabet Med. 2019;36(1):9-21. doi: https://doi.org/10.1111/dme.13823
79. Petraitienė I, Barauskas G, Gulbinas A, et al. Congenital hyperinsulinism. Medicina (Kaunas). 2014;50(3):190-5. doi: https://doi.org/10.1016/j.medici.2014.08.006
80. Тихонович Ю.В., Петряйкина Е.Е., Рыбкина И.Г., и др. Дефицит фруктозо-1,6-бифосфатазы: описание первого генетически подтвержденного случая в России // Педиатрия. Журнал им. Г.Н. Сперанского. — 2015. — Т. 94. — №1. — С. 96-99
81. Altassan R, Radenkovic S, Edmondson AC, et al. International consensus guidelines for phosphoglucomutase 1 deficiency (PGM1-CDG): Diagnosis, follow-up, and management. J Inherit Metab Dis. 2021;44(1):148-163. doi: https://doi.org/10.1002/jimd.12286
82. Loewenthal N, Haim A, Parvari R, Hershkovitz E. Phosphoglucomutase-1 deficiency: Intrafamilial clinical variability and common secondary adrenal insufficiency. Am J Med Genet A. 2015;167A(12):3139-43. doi: https://doi.org/10.1002/ajmg.a.37294
83. Quinonez SC, Thoene JG. Dihydrolipoamide Dehydrogenase Deficiency. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2022
84. Orphanet: the portal for rare diseases and orphan drugs [Internet]. Available from: https://www.orpha.net/consor/cgi-bin/Disease_Search.php?lng=EN&data_id=5520&Disease_Disease_Search_diseaseGroup=DIHYDROLIPOAMIDE-DEHYDROGENASE-DEFICIENCY&Disease_Disease_Search_diseaseType=Pat&Disease(s)/group%20of%20diseases=Pyruvate-dehydrogenase-E3-deficiency&title=Pyruvate%20dehydrogenase%20E3%20deficiency&search=Disease_Search_Simple
85. Adam MP, Feldman J, Mirzaa GM, et al. Dihydrolipoamide Dehydrogenase Deficiency. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024
86. Cryer PE, Axelrod L, Grossman AB, et al. Evaluation and management of adult hypoglycemic disorders: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2009;94(3):709- 728. doi: https://doi.org/10.1210/jc.2008-1410
87. Ponzi E, Maiorana A, Lepri FR, et al. Persistent Hypoglycemia in Children: Targeted Gene Panel Improves the Diagnosis of Hypoglycemia Due to Inborn Errors of Metabolism. J Pediatr. 2018;202:272-8. doi: https://doi.org10.1016/j.jpeds.2018.06.050
88. Yan F-F, Lin Y-W, MacMullen C, Ganguly A, et al. Congenital hyperinsulinism associated ABCC8 mutations that cause defective trafficking of ATP-sensitive K+ channels: identification and rescue. Diabetes. 2007;56(9):2339-48. doi: https://doi.org/10.2337/db07-0150
89. Овсянникова А.К., Рымар О.Д., Шахтшнейдер Е.В., и др. Сахарный диабет, связанный с мутацией гена ABCC8 (MODY 12): особенности клинического течения и терапии // Сахарный диабет. — 2019. — Т. 22. — №1. — С. 88-94. doi: https://doi.org/10.14341/DM9600
90. Li M, Han X, Ji L. Clinical and Genetic Characteristics of ABCC8 Nonneonatal Diabetes Mellitus: A Systematic Review. J Diabetes Res. 2021:2021:9479268. doi: https://doi.org/10.1155/2021/9479268
91. Меликян М.А., Петряйкина Е.Е., Фомина В.Л., и др. Врожденный гиперинсулинизм: диагностика и лечение // Педиатрия. Журнал им. Г.Н. Сперанского. — 2011. — Т. 90. — №1. — С. 59-65
92. Goh LL, Lee Y, Tan ES, et al. Patient with multiple acyl-CoA dehydrogenase deficiency disease and ETFDH mutations benefits from riboflavin therapy: a case report. BMC Medical Genomics. 2018;11:37
93. Bergendahl LT, Gerasimavicius L, Miles J, et al. The role of protein complexes in human genetic disease. Protein Sci. 2019;28(8):1400-1411. doi: https://doi.org/10.1002/pro.3667
94. Zschocke J, Schulze A, Lindner M, et al. Molecular and functional characterisation of mild MCAD deficiency. Hum Genet. 2001;108(5):404-8. doi: https://doi.org/10.1007/s004390100501
95. MerrittII JL, Gallagher RC. Inborn Errors of Carbohydrate, Ammonia, Amino Acid, and Organic Acid Metabolism. In: Avery’s Diseases of the Newborn (Tenth Edition). Gleason C, Juul S, authors. 2018
96. Zhu M, Zhu X, Qi X, et al. Riboflavin-responsive multiple Acyl-CoA dehydrogenation deficiency in 13 cases, and a literature review in mainland Chinese patients. J Hum Genet. 2014;59(5):256-61. doi: https://doi.org/10.1038/jhg.2014.10
97. Béhin A, Acquaviva-Bourdain C, Souvannanorath S, et al. Multiple acyl-CoA dehydrogenase deficiency (MADD) as a cause of late-onset treatable metabolic disease. Rev Neurol (Paris). 2016;172(3):231-41. doi: https://doi.org/10.1016/j.neurol.2015.11.008
98. Carreau C, Lenglet T, Mosnier I, et al. A juvenile ALS-like phenotype dramatically improved after high-dose riboflavin treatment. Ann Clin Transl Neurol. 2020;7(2):250-253. doi: https://doi.org/10.1002/acn3.50977
99. Andresen BS, Dobrowolski SF, O’Reilly L, et al. Medium-chain acyl-CoA dehydrogenase (MCAD) mutations identified by MS/MS-based prospective screening of newborns differ from those observed in patients with clinical symptoms: identification and characterization of a new, prevalent mutation that results in mild MCAD deficiency. Am J Hum Genet. 2001;68(6):1408-18. doi: https://doi.org/10.1086/320602
100. Santer R, Rischewski J, von Weihe M, et al. The spectrum of aldolase B (ALDOB) mutations and the prevalence of hereditary fructose intolerance in Central Europe. Hum Mutat. 2005;25(6):594. doi: https://doi.org/10.1002/humu.9343
101. Новиков П.В., Михайлова С.В., Захарова Е.Ю., Воинова В.Ю. Федеральные клинические рекомендации по диагностике и лечению Х-сцепленной адренолейкодистрофии. 2013
102. Christesen H, Nielsen RG, Lund AM, et al. Extreme Hypercalcaemia: Watch for Glycogen Storage Disease Type 1a with Hyperinsulinism. ESPE Abstracts. 2019;92:P3-29
103. Yukina M, Solodovnikova E, Popov S, et al. Clinical Case Report of Non-Diabetic Hypoglycemia Due to a Combination of Germline Mutations in the MEN1 and ABCC8 Genes. Genes. 2023;14:1952. doi: https://doi.org/10.3390/genes14101952
104. Cohn A, Ohri A. Diabetes mellitus in a patient with glycogen storage disease type Ia: a case report. J Med Case Rep. 2017;11:319
105. https://www.ncbi.nlm.nih.gov/clinvar/variation/196880/?oq=rs151344624&m=NM_000352.6(ABCC8):c.4160_4162del%20(p.Phe1387del
106. Shyng SL, Ferrigni T, Shepard JB, et al. Functional analyses of novel mutations in the sulfonylurea receptor 1 associated with persistent hyperinsulinemic hypoglycemia of infancy. Diabetes. 1998;47(7):1145-51. doi: https://doi.org/10.2337/diabetes.47.7.1145
107. Glaser B, Blech I, Krakinovsky Y, et al. ABCC8 mutation allele frequency in the Ashkenazi Jewish population and risk of focal hyperinsulinemic hypoglycemia. Genet Med. 2011;13(10):891-4. doi: https://doi.org/10.1097/GIM.0b013e31821fea33
108. Nestorowicz A, Glaser B, Wilson BA, et al. Genetic heterogeneity in familial hyperinsulinism. Hum Mol Genet. 1998;7(7):1119-28. doi: https://doi.org/10.1093/hmg/7.7.1119
109. Dekel B, Lubin D, Modan-Moses D, et al. Compound heterozygosity for the common sulfonylurea receptor mutations can cause mild diazoxide-sensitive hyperinsulinism. Clin Pediatr (Phila). 2002;41(3):183-6. doi: https://doi.org/10.1177/000992280204100310
110. Cartier EA, Conti LR, Vandenberg CA, Shyng SL. Defective trafficking and function of KATP channels caused by a sulfonylurea receptor 1 mutation associated with persistent hyperinsulinemic hypoglycemia of infancy. Proc Natl Acad Sci USA. 2001;98(5):2882-7. doi: https://doi.org/10.1073/pnas.051499698
111. Glaser B, Furth J, Stanley CA, et al. Intragenic single nucleotide polymorphism haplotype analysis of SUR1 mutations in familial hyperinsulinism. Hum Mutat. 1999;14(1):23-9. doi: https://doi.org/10.1002/(SICI)1098-1004(1999)14:1<23::AID-HUMU3>3.0.CO;2-#
112. Nestorowicz A, Wilson BA, Schoor KP, et al. Mutations in the sulonylurea receptor gene are associated with familial hyperinsulinism in Ashkenazi Jews. Hum Mol Genet. 1996;5(11):1813-22. doi: https://doi.org/10.1093/hmg/5.11.1813
113. Jeannot E, Lacape G, Gin H, et al. Double heterozygous germline HNF1A mutations in a patient with liver adenomatosis. Diabetes Care. 2012;35(5):e35. doi: https://doi.org/10.2337/dc12-0030
114. Tung JY-l, Boodhansingh K, Stanley CA, De León DD. Clinical heterogeneity of hyperinsulinism due to HNF1A and HNF4A mutations. Pediatr Diabetes. 2018;19(5):910–916. doi: https://doi.org/10.1111/pedi.12655
115. Douillard C, Jannin A, Vantyghem M-C. Rare causes of hypoglycemia in adults. Ann Endocrinol (Paris). 2020;81(2-3):110-117. doi: https://doi.org/10.1016/j.ando.2020.04.003
116. Vantyghem M-C, Mention C, Dobbelaere D, Douillard C. Hypoglycemia and endocrine effects of adults’ inborn errors of metabolism. Ann Endocrinol (Paris). 2009;70(1):25-42. doi: https://doi.org/10.1016/j.ando.2008.12.007
Review
For citations:
Yukina M.Yu., Troshina E.A., Nuralieva N.F., Popov S.V., Mokrysheva N.G. Congenital disorders of glucose metabolism in adults with nondiabetic hypoglycemia. Obesity and metabolism. 2024;21(2):136-150. (In Russ.) https://doi.org/10.14341/omet13052

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).