Obesity and the nervous system
https://doi.org/10.14341/omet13019
Abstract
The article discusses certain aspects of the relationship between neurological diseases and metabolic disorders that are extremely relevant in connection with the pandemic spread of obesity. The pathogenesis of damage to the nervous system (NS) is considered in detail. The influence of the main metabolic factors on the development of cerebrovascular diseases (CVD), incl. neuroinflammation, changes in hemostasis, etc. is demonstrated. The problem of the development of cognitive dysfunction against the background of obesity due to the formation of atrophic processes in brain structures is highlighted. Modern possibilities of evaluation and modulation of eating behavior due to brain stimulation using functional magnetic resonance imaging (fMRI) and navigational rhythmic transcranial magnetic stimulation (rTMS) are described.
The problem of cerebrometabolic health is presented as a continuum of metabolic and cerebral disturbances. The mechanisms of interaction between the two most important systems of the body allow us to consider the changes that occur in them as an integral neuroendocrine alteration.
About the Authors
K. V. AntonovaRussian Federation
Ksenia V. Antonova - MD, PhD.
80 Volokolamskoe Shosse, 125367 Moscow
Researcher ID: J-9971-2016; Scopus Author ID: 7004672742
Competing Interests:
Работа выполнена в соавторстве с членом редакционной коллегии журнала «Ожирение и метаболизм» Трошиной Е.А.
M. M. Tanashyan
Russian Federation
Marine M. Tanashyan - MD, PhD, Professor.
Moscow
Researcher ID: F-8483-2014; Scopus Author ID: 6506228066
Competing Interests:
Работа выполнена в соавторстве с членом редакционной коллегии журнала «Ожирение и метаболизм» Трошиной Е.А.
A. A. Raskurazhev
Russian Federation
Anton A. Raskurazhev - MD, PhD.
Moscow
Researcher ID: K-7636-2012; Scopus Author ID: 57191092653
Competing Interests:
Работа выполнена в соавторстве с членом редакционной коллегии журнала «Ожирение и метаболизм» Трошиной Е.А.
N. E. Spryshkov
Russian Federation
Nikita E. Spryshkov.
Moscow
Competing Interests:
Работа выполнена в соавторстве с членом редакционной коллегии журнала «Ожирение и метаболизм» Трошиной Е.А.
A. A. Panina
Russian Federation
Anastasiya A. Panina.
Moscow
Competing Interests:
Работа выполнена в соавторстве с членом редакционной коллегии журнала «Ожирение и метаболизм» Трошиной Е.А.
O. V. Lagoda
Russian Federation
Olga V. Lagoda - MD, PhD.
Moscow
Competing Interests:
Работа выполнена в соавторстве с членом редакционной коллегии журнала «Ожирение и метаболизм» Трошиной Е.А.
A. S. Ametov
Russian Federation
Alexander S. Ametov - MD, PhD, Professor.
Moscow
Competing Interests:
Работа выполнена в соавторстве с членом редакционной коллегии журнала «Ожирение и метаболизм» Трошиной Е.А.
E. A. Troshina
Russian Federation
Ekaterina A. Troshina - MD, PhD, Professor.
Moscow
Competing Interests:
Работа выполнена в соавторстве с членом редакционной коллегии журнала «Ожирение и метаболизм» Трошиной Е.А.
References
1. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med. 2017;377(1):13-27. doi: https://doi.org/10.1056/NEJMoa1614362
2. Mokrysheva NG. Fighting obesity as a direction of national health care development. Obe Metab. 2022;19(1):4-6. (In Russ.). doi: https://doi.org/10.14341/omet12865
3. Alferova VI, Mustafina S V. The prevalence of obesity in the adult population of the Russian Federation (literature review). Obe Metab. 2022;19(1):96-105. (In Russ.). doi: https://doi.org/10.14341/omet12809
4. Prevalence of the risk factors of cerebrovascular disorders in the capital city residents aged 40-59: a clinical and epidemiological study. Annals of Clinical and Experimental Neurology. 2016;10(4):11-19. (In Russ.). doi: https://doi.org/10.17816/psaic13
5. Sinha R. Role of addiction and stress neurobiology on food intake and obesity. Biol Psychol. 2018;131:5-13. doi: https://doi.org/10.1016/j.biopsycho.2017.05.001
6. Candler T, Kuhnen P, Prentice AM, Silver M. Epigenetic regulation of POMC; implications for nutritional programming, obesity and metabolic disease. Front Neuroendocrinol. 2019;54:100773. doi: https://doi.org/10.1016/j.yfrne.2019.100773
7. Goit RK, Taylor AW, Lo ACY. The central melanocortin system as a treatment target for obesity and diabetes: A brief overview. Eur J Pharmacol. 2022;924:174956. doi: https://doi.org/10.1016/j.ejphar.2022.174956
8. Yang D, Hou X, Yang G, et al. Effects of the POMC System on Glucose Homeostasis and Potential Therapeutic Targets for Obesity and Diabetes. Diabetes, Metab Syndr Obes Targets Ther. 2022;Volume 15:2939-2950. doi: https://doi.org/10.2147/DMSO.S380577
9. Ono H. Molecular Mechanisms of Hypothalamic Insulin Resistance. Int J Mol Sci. 2019;20(6):1317. doi: https://doi.org/10.3390/ijms20061317
10. Uranga RM, Keller JN. The Complex Interactions Between Obesity, Metabolism and the Brain. Front Neurosci. 2019;13. doi: https://doi.org/10.3389/fnins.2019.00513
11. O'Brien PD, Hinder LM, Callaghan BC, Feldman EL. Neurological consequences of obesity. Lancet Neurol. 2017;16(6):465-477. doi: https://doi.org/10.1016/S1474-4422(17)30084-4
12. Chumakova GA, Ott A V., Veselovskaya NG, Gritsenko O V., Shenkova NN. PATHOGENETIC MECHANISMS OF LEPTIN RESISTANCE. Russ J Cardiol. 2015;(4):107. (In Russ.). doi: https://doi.org/10.15829/1560-4071-2015-4-107-110
13. Banks WA. Leptin and the Blood-Brain Barrier: Curiosities and Controversies. In: Comprehensive Physiology. Wiley; 2021:2351-2369. doi: https://doi.org/10.1002/cphy.c200017
14. Lavoie O, Michael NJ, Caron A. A critical update on the leptin-melanocortin system. J Neurochem. 2023;165(4):467-486. doi: https://doi.org/10.1111/jnc.15765
15. Zeltser LM, Seeley RJ, Tschop MH. Synaptic plasticity in neuronal circuits regulating energy balance. Nat Neurosci. 2012. doi: https://doi.org/10.1038/nn.3219
16. Quaresma PGF, Wasinski F, Mansano NS, et al. Leptin Receptor Expression in GABAergic Cells is Not Sufficient to Normalize Metabolism and Reproduction in Mice. Endocrinology. 2021;162(11). doi: https://doi.org/10.1210/endocr/bqab168
17. Comeras LB, Herzog H, Tasan RO. Neuropeptides at the crossroad of fear and hunger: a special focus on neuropeptide Y. Ann N Y Acad Sci. 2019;1455(1):59-80. doi: https://doi.org/10.1111/nyas.14179
18. Sousa D, Lopes E, Rosendo-Silva D, Matafome P. The Bidirectional Relationship of NPY and Mitochondria in Energy Balance Regulation. Biomedicines. 2023;11(2):446. doi: https://doi.org/10.3390/biomedicines11020446
19. Marcos JL, Olivares-Barraza R, Ceballo K, et al. Obesogenic Diet-Induced Neuroinflammation: A Pathological Link between Hedonic and Homeostatic Control of Food Intake. Int J Mol Sci. 2023;24(2):1468. doi: https://doi.org/10.3390/ijms24021468
20. Bandala C, Cardenas-Rodnguez N, Reyes-Long S, et al. Trends in Gliosis in Obesity, and the Role of Antioxidants as a Therapeutic Alternative. Antioxidants. 2022;11(10):1972. doi: https://doi.org/10.3390/antiox11101972
21. Sewaybricker LE, Huang A, Chandrasekaran S, Melhorn SJ, Schur EA. The Significance of Hypothalamic Inflammation and Gliosis for the Pathogenesis of Obesity in Humans. Endocr Rev. 2023. doi: https://doi.org/10.1210/endrev/bnac023
22. Zhang Q, Jin K, Chen B, et al. Overnutrition Induced Cognitive Impairment: Insulin Resistance, Gut-Brain Axis, and Neuroinflammation. Front Neurosci. 2022;16. doi: https://doi.org/10.3389/fnins.2022.884579
23. Maurizi G, Della Guardia L, Maurizi A, Poloni A. Adipocytes properties and crosstalk with immune system in obesity-related inflammation. J Cell Physiol. 2018;233(1):88-97. doi: https://doi.org/10.1002/jcp.25855
24. Lin Y, Qu L, Wu J, Pu M, Huang Y, Cao Y. Identification of Adipogenesis Subgroups and Immune Infiltration Characteristics in Diabetic Peripheral Neuropathy. Xu Z, ed. J Immunol Res. 2023;2023:1-15. doi: https://doi.org/10.1155/2023/3673094
25. Iqbal Z, Bashir B, Ferdousi M, et al. Lipids and peripheral neuropathy. Curr Opin Lipidol. 2021;32(4):249-257. doi: https://doi.org/10.1097/MOL.0000000000000770
26. Rumora AE, Savelieff MG, Sakowski SA, Feldman EL. Disorders of mitochondrial dynamics in peripheral neuropathy: Clues from hereditary neuropathy and diabetes. In: International Review of Neurobiology. 2019:127-176. doi: https://doi.org/10.1016/bs.irn.2019.05.002
27. Marini S, Merino J, Montgomery BE, et al. Mendelian Randomization Study of Obesity and Cerebrovascular Disease. Ann Neurol. 2020;87(4):516-524. doi: https://doi.org/10.1002/ana.25686
28. Letra L, Sena C. Cerebrovascular Disease: Consequences of Obesity-Induced Endothelial Dysfunction. In: Advances in Neurobiology. ; 2017:163-189. doi: https://doi.org/10.1007/978-3-319-63260-5_7
29. Feigin VL, Stark BA, Johnson CO, et al. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20(10):795-820. doi: https://doi.org/10.1016/S1474-4422(21)00252-0
30. Gorelick PB. The global burden of stroke: persistent and disabling. Lancet Neurol. 2019;18(5):417-418. doi: https://doi.org/10.1016/S1474-4422(19)30030-4
31. Kim MS, Kim WJ, Khera A V., et al. Association between adiposity and cardiovascular outcomes: An umbrella review and meta-analysis of observational and Mendelian randomization studies. Eur Heart J. 2021. doi: https://doi.org/10.1093/eurheartj/ehab454
32. Horn JW, Feng T, M0rkedal B, et al. Obesity and Risk for First Ischemic Stroke Depends on Metabolic Syndrome: The HUNT Study. Stroke. 2021;52(11):3555-3561. doi: https://doi.org/10.1161/STROKEAHA.120.033016
33. Kim P-J, Kim C, Lee S-H, et al. Another Look at Obesity Paradox in Acute Ischemic Stroke: Association Rule Mining. J Pers Med. 2021;12(1):16. doi: https://doi.org/10.3390/jpm12010016
34. Tanashyan ММ, Antonova KV, Lagoda OV, Shabalina АА. Resolved and unresolved issues of cerebrovascular disease in diabetes mellitus. Annals of Clinical and Experimental Neurology. 2021;15(3):5-14. (in Russ). doi: https://doi.org/10.54101/ACEN.2021.3.1
35. Chavakis T, Alexaki VI, Ferrante AW. Macrophage function in adipose tissue homeostasis and metabolic inflammation. Nat Immunol. 2023;24(5):757-766. doi: https://doi.org/10.1038/s41590-023-01479-0
36. Ahmed B, Sultana R, Greene MW. Adipose tissue and insulin resistance in obese. Biomed Pharmacother. 2021;137:111315. doi: https://doi.org/10.1016/j.biopha.2021.111315
37. Tanashyan MM, Antonova KV., Raskurazhev AA, Lagoda O V., Shabalina AA, Romantsova TI. Cerebrovascular disorders and glucolipotoxicity. Ann Clin Exp Neurol. 2020;14(1):17-24. (in Russ.). doi: https://doi.org/10.25692/ACEN.2020.1.2
38. Ortega FB, Lavie CJ, Blair SN. Obesity and Cardiovascular Disease. Circ Res. 2016;118(11):1752-1770. doi: https://doi.org/10.1161/CIRCRESAHA.115.306883
39. Chumakova GA, Kuznetsova TY, Druzhilov MA, Veselovskaya NG. Obesity induced hypertension: The main pathophysiologic mechanisms. Arterial Hypertension. 2021, 3:260-268. (in Russ.). doi: https://doi.org/10.18705/1607-419X-2021-27-3-260-268
40. Antonova KV, Tanashyan MM, Shabalina AA, et al. Hemostasis in patients with type 2 diabetes mellitus and obesity in acute and chronic cerebrovascular pathology. Thrombosis, Hemostasis and Rheology. 2020;82(2):60-67 (in Russ). doi: https://doi.org/10.25555/THR.2020.2.0919
41. Tanashyan M. Cerebrovascular Pathology and Metabolic Syndrome. LLC «AST 345»; 2019. (in Russ.). doi: https://doi.org/10.33901/978-5-6041430-2-5-2019-1-370
42. Prospective Studies Collaboration. Body-mass index and causespecific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373(9669):1083-1096. doi: https://doi.org/10.1016/S0140-6736(09)60318-4
43. Tanashyan MM, Antonova KV, Lagoda OV, et al. Ozhirenie i protrombogennoe sostoyanie krovi u pacientov s cerebrovaskulyarny'mi zabolevaniyami // Thrombosis, Hemostasis and Rheology. 2023;(3):53-62 (in Russ.). doi: https://doi.org/10.25555/THR.2023.3.1069
44. Nichols E, Steinmetz JD, Vollset SE, et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Heal. 2022;7(2):e105-e125. doi: https://doi.org/10.1016/S2468-2667(21)00249-8
45. Stillman CM, Weinstein AM, Marsland AL, Gianaros PJ, Erickson KI. Body-Brain Connections: The Effects of Obesity and Behavioral Interventions on Neurocognitive Aging. Front Aging Neurosci. 2017;9. doi: https://doi.org/10.3389/fnagi.2017.00115
46. Raji CA, Ho AJ, Parikshak NN, et al. Brain structure and obesity. Hum Brain Mapp. 2010;31(3):353-364. doi: https://doi.org/10.1002/hbm.20870
47. Medic N, Ziauddeen H, Ersche KD, et al. Increased body mass index is associated with specific regional alterations in brain structure. Int J Obes. 2016;40(7):1177-1182. doi: https://doi.org/10.1038/ijo.2016.42
48. Abdalla MMI, Azzani M, Atroosh W, Anbazhagan D, Kumarasamy V. The association between mental health and obesity in postmenopausal women: A systematic review. Endocr Regul. 2022;56(4):295-310. doi: https://doi.org/10.2478/enr-2022-0032
49. Singh-Manoux A, Dugravot A, Shipley M, et al. Obesity trajectories and risk of dementia: 28 years of follow-up in the Whitehall II Study. Alzheimer's Dement. 2018;14(2):178-186. doi: https://doi.org/10.1016/j.jalz.2017.06.2637
50. Kivimaki M, Luukkonen R, Batty GD, et al. Body mass index and risk of dementia: Analysis of individual-level data from 1.3 million individuals. Alzheimer's Dement. 2018;14(5):601-609. doi: https://doi.org/10.1016/j.jalz.2017.09.016
51. Wong Zhang DE, Tran V, Vinh A, et al. Pathophysiological Links Between Obesity and Dementia. NeuroMolecular Med. 2023;25(4):451-456. doi: https://doi.org/10.1007/s12017-023-08746-1
52. Loffredo L, Ettorre E, Zicari AM, et al. Oxidative Stress and Gut-Derived Lipopolysaccharides in Neurodegenerative Disease: Role of NOX2. Oxid Med Cell Longev. 2020;2020:1-7. doi: https://doi.org/10.1155/2020/8630275
53. Vamanu E, Rai SN. The Link between Obesity, Microbiota Dysbiosis, and Neurodegenerative Pathogenesis. Diseases. 2021;9(3):45. doi: https://doi.org/10.3390/diseases9030045
54. Chowen JA, Garcia-Segura LM. Microglia, neurodegeneration and loss of neuroendocrine control. Prog Neurobiol. 2020;184:101720. doi: https://doi.org/10.1016/j.pneurobio.2019.101720
55. Flores-Cordero JA, Perez-Perez A, Jimenez-Cortegana C, Alba G, Flores-Barragan A, Sanchez-Margalet V. Obesity as a Risk Factor for Dementia and Alzheimer's Disease: The Role of Leptin. Int J Mol Sci. 2022;23(9):5202. doi: https://doi.org/10.3390/ijms23095202
56. Nazish S. Obesity and metabolic syndrome in patients with epilepsy, their relation with epilepsy control. Ann Afr Med. 2023;22(2):136. doi: https://doi.org/10.4103/aam.aam_139_22
57. Stampanoni Bassi M, Iezzi E, Buttari F, et al. Obesity worsens central inflammation and disability in multiple sclerosis. Mult Scler J. 2020;26(10):1237-1246. doi: https://doi.org/10.1177/1352458519853473
58. Kuznetsova PI, Romantsova TI, Logvinova OV, et al. Functional brain MRI in the setting of drug correction of obesity. Obesity and metabolism. 2022;19(1):74-82. (In Russ.). doi: https://doi.org/10.14341/omet12810
59. Kuznetsova PI, Logvinova OV, Poydasheva AG, et al. Navigated repetitive transcranial magnetic stimulation to correct eating behavior in obesity (clinical cases). Obesity and metabolism. 2020;17(1):100-109. (In Russ.). doi: https://doi.org/10.14341/omet10148
Supplementary files
|
1. Figure 1. Model of hypothalamic gliosis in humans (based on the article Sewaybricker LE, Huang A, Chandrasekaran S, Melhorn SJ, Schur EA. The Significance of Hypothalamic Inflammation and Gliosis for the Pathogenesis of Obesity in Humans [21]). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(357KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Pathogenesis of neurological diseases in obesity. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(519KB)
|
Indexing metadata ▾ |
Review
For citations:
Antonova K.V., Tanashyan M.M., Raskurazhev A.A., Spryshkov N.E., Panina A.A., Lagoda O.V., Ametov A.S., Troshina E.A. Obesity and the nervous system. Obesity and metabolism. 2024;21(1):68-78. (In Russ.) https://doi.org/10.14341/omet13019

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).