Preview

Obesity and metabolism

Advanced search

Adipose tissue — derived mesenchymal stem: a role in the pathogenesis of obesity and type 2 diabetes mellitus

https://doi.org/10.14341/omet12985

Abstract

Adipose tissue-derived mesenchymal stem are adult stem cells endowed with multipotent abilities and immunomodulatory properties, like mesenchymal stem cells of other origins. Numerous studies show that adipose tissue stem cells are involved in the pathological process and can exhibit pro-inflammatory properties and attract inflammatory immune cells in the neighborhood. Subsequently, inflammation creates a microenvironment leading to adipose tissue dysfunction. Examples of such a process are obesity and type 2 diabetes mellitus, in which adipogenesis is disrupted and insulin resistance is initiated. The aim of this review is to understand the role of adipose tissue stem cells in the pathogenesis of obesity and type 2 diabetes mellitus.

About the Authors

E. G. Uchasova
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Evgenia G. Uchasova, MD, PhD

6, Sosnovyy Bul’var, 650002 Kemerovo

eLibrary SPIN: 1539-5332



Yu. A. Dyleva
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Yulia A. Dyleva, MD, PhD

Kemerovo

 



E. V. Belik
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Ekaterina V. Belik, MD, PhD

Kemerovo

eLibrary SPIN: 5705-9143



O. V. Gruzdeva
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Olga V. Gruzdeva, МD, PhD, professor

Kemerovo

eLibrary SPIN: 4322-0963



References

1. Silva KR, Baptista LS. Adipose-derived stromal/stem cells from different adipose depots in obesity development. World J Stem Cells. 2019;11(3):147-166. doi: https://doi.org/10.4252/wjsc.v11.i3.147

2. Wronska A, Kmiec Z. Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol. 2012;205(2):194-208. doi: https://doi.org/10.1111/j.1748-1716.2012.02409.x

3. de Ferranti S, Mozaffarian D. The Perfect Storm: Obesity, Adipocyte Dysfunction, and Metabolic Consequences. Clin Chem. 2008;54(6):945-955. doi: https://doi.org/10.1373/clinchem.2007.100156

4. Global report on diabetes. Geneva: World Health Organization; 2018. License CC BY-NC-SA 3.0 IGO. (In Russ.).

5. Conway B, Rene A. Obesity as a disease: no lightweight matter. Obes Rev. 2004;5(3):145-151. doi: https://doi.org/10.1111/j.1467-789X.2004.00144.x

6. Pestel J, Chehimi M, Bonhomme M, et al. IL-17A contributes to propagation of inflammation but does not impair adipogenesis and/or insulin response, in adipose tissue of obese individuals. Cytokine. 2020;126(3):154865. doi: https://doi.org/10.1016/j.cyto.2019.154865

7. Dedov II, Shestakova MV, Galstyan GR. The prevalence of type 2 diabetes mellitus in the adult population of Russia (NATION study). Diabetes mellitus. 2016;19(2):104-112. (In Russ.). doi: https://doi.org/10.14341/DM2004116-17

8. Agareva M, Stafeev I, Michurina S, et al. Type 2 diabetes mellitus facilitates shift of adipose-derived stem cells ex vivo differentiation toward osteogenesis among patients with obesity. Life. 2022;12(5):688. doi: https://doi.org/10.3390/life12050688

9. Zhu X-Y, Ma S, Eirin A, et al. Functional plasticity of adipose-derived stromal cells during development of obesity. Stem Cells Transl Med. 2016;5(7):893-900. doi: https://doi.org/10.5966/sctm.2015-0240

10. Schipper HS, Prakken B, Kalkhoven E, Boes M. Adipose tissue-resident immune cells: key players in immunometabolism. Trends Endocrinol Metab. 2012;23(8):407-415. doi: https://doi.org/10.1016/j.tem.2012.05.011

11. Gray SL, Vidal-Puig AJ. Adipose tissue expandability in the maintenance of metabolic homeostasis. Nutr Rev. 2008;65(8):S7-S12. doi: https://doi.org/10.1111/j.1753-4887.2007.tb00331.x

12. Zimmerlin L, Donnenberg VS, Rubin JP, Donnenberg AD. Mesenchymal markers on human adipose stem/progenitor cells. Cytometry A. 2013;83(1):134-140. doi: https://doi.org/10.1002/cyto.a.22227

13. Mitchell JB, Mcintosh K, Zvonic S, et al. Immunophenotype of human adipose-derived cells: Temporal changes in stromal-associated and stem cell–associated markers. Stem Cells. 2006;24(2):376-385. doi: https://doi.org/10.1634/stemcells.2005-0234

14. Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International So. Cytotherapy. 2013;15(6):641-648. doi: https://doi.org/10.1016/j.jcyt.2013.02.006

15. Bacakova L, Zarubova J, Travnickova M, et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review. Biotechnol Adv. 2018 36(4):1111-1126. doi: 10.1016/j.biotechadv.2018.03.011.

16. Mohamed-Ahmed S, Fristad I, Lie SA, et al. Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem Cell Res Ther. 2018;9(1):168. doi: https://doi.org/10.1186/s13287-018-0914-1

17. Dubey N, Mishra V, Dubey R, et al. Revisiting the advances in isolation, characterization and secretome of adipose-derived stromal/stem cells. Int J Mol Sci. 2018;19(8):2200. doi: https://doi.org/10.3390/ijms19082200

18. Krawczenko A, Klimczak A. Adipose tissue-derived mesenchymal stem/stromal cells and their contribution to angiogenic processes in tissue regeneration. Int J Mol Sci. 2022;23(5):2425. doi: https://doi.org/10.3390/ijms23052425

19. Pellegrinelli V, Carobbio S, Vidal-Puig A. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia. 2016;59(6):1075-1088. doi: https://doi.org/10.1007/s00125-016-3933-4

20. Nakagami H, Maeda K, Morishita R, et al. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue–derived stromal cells. Arterioscler Thromb Vasc Biol. 2005;25(12):2542-2547. doi: https://doi.org/10.1161/01.ATV.0000190701.92007.6d

21. Dykstra JA, Facile T, Patrick RJ, et al. Concise review: Fat and furious: harnessing the full potential of adipose-derived stromal vascular fraction. Stem Cells Transl Med. 2017;6(4):1096-1108. doi: https://doi.org/10.1002/sctm.16-0337.

22. Frazier TP, Gimble JM, Devay JW, et al. Body mass index affects proliferation and osteogenic differentiation of human subcutaneous adipose tissue-derived stem cells. BMC Cell Biol. 2013;14(1):34. doi: https://doi.org/10.1186/1471-2121-14-34

23. Oliva-Olivera W, Gea AL, Lhamyani S, et al. Differences in the osteogenic differentiation capacity of omental adipose-derived stem cells in obese patients with and without metabolic syndrome. Endocrinology. 2015;156(12):4492-4501. doi: https://doi.org/10.1210/en.2015-1413

24. Ambrosi TH, Scialdone A, Graja A, et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell. 2017;20(6):771-784.e6. doi: https://doi.org/10.1016/j.stem.2017.02.009

25. Wu C-L, Diekman BO, Jain D, Guilak F. Diet-induced obesity alters the differentiation potential of stem cells isolated from bone marrow, adipose tissue and infrapatellar fat pad: the effects of free fatty acids. Int J Obes. 2013;37(8):1079-1087. doi: https://doi.org/10.1038/ijo.2012.171

26. Isakson P, Hammarstedt A, Gustafson B, Smith U. Impaired preadipocyte differentiation in human abdominal obesity. Diabetes. 2009;58(7):1550-1557. doi: https://doi.org/10.2337/db08-1770

27. Pérez LM, Suárez J, Bernal A, et al. Obesity-driven alterations in adipose-derived stem cells are partially restored by weight loss. Obesity. 2016;24(3):661-669. doi: https://doi.org/10.1002/oby.21405

28. Oñate B, Vilahur G, Ferrer‐Lorente R, et al. The subcutaneous adipose tissue reservoir of functionally active stem cells is reduced in obese patients. FASEB J. 2012;26(10):4327-4336. doi: https://doi.org/10.1096/fj.12-207217

29. Togliatto G, Dentelli P, Gili M, et al. Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing miR-126 content: impact on clinical applications. Int J Obes. 2016;40(1):102-111. doi: https://doi.org/10.1038/ijo.2015.123

30. Silva KR, Liechocki S, Carneiro JR, et al. Stromal-vascular fraction content and adipose stem cell behavior are altered in morbid obese and post bariatric surgery ex-obese women. Stem Cell Res Ther. 2015;6(1):72. doi: https://doi.org/10.1186/s13287-015-0029-x

31. Serena C, Keiran N, Ceperuelo-Mallafre V, et al. Obesity and type 2 diabetes alters the immune properties of human adipose derived stem cells. Stem Cells. 2016;34(10):2559-2573. doi: https://doi.org/10.1002/stem.2429

32. Pérez LM, de Lucas B, Lunyak VV, Gálvez BG. Adipose stem cells from obese patients show specific differences in the metabolic regulators vitamin D and Gas5. Mol Genet Metab Reports. 2017;12(10):51-56. doi: https://doi.org/10.1016/j.ymgmr.2017.05.008

33. Frank BHu. Globalization of Diabetes: The role of diet, lifestyle, and genes. Diabetes Care. 2011;34(6):1249-1257. doi: https://doi.org/10.2337/dc11-0442

34. Keane KN, Calton EK, Carlessi R, et al. The bioenergetics of inflammation: insights into obesity and type 2 diabetes. Eur J Clin Nutr. 2017;71(7):904-912. doi: https://doi.org/10.1038/ejcn.2017.45

35. van Tienen FHJ, van der Kallen CJH, Lindsey PJ, et al. Preadipocytes of type 2 diabetes subjects display an intrinsic gene expression profile of decreased differentiation capacity. Int J Obes. 2011;35(9):1154-1164. doi: https://doi.org/10.1038/ijo.2010.275

36. Ge Q, Zhang H, Hou J, et al. VEGF secreted by mesenchymal stem cells mediates the differentiation of endothelial progenitor cells into endothelial cells via paracrine mechanisms. Mol Med Rep. 2017;35(9):1154-1164. doi: https://doi.org/10.3892/mmr.2017.8059

37. Bonventre J V. Microvesicles from mesenchymal stromal cells protect against acute Kidney Injury. J Am Soc Nephrol. 2009;20(5):927-928. doi: https://doi.org/10.1681/ASN.2009030322

38. Cheng N-C, Lin W-J, Ling T-Y, Young T-H. Sustained release of adipose-derived stem cells by thermosensitive chitosan/gelatin hydrogel for therapeutic angiogenesis. Acta Biomater. 2017;51(5):258-267. doi: https://doi.org/10.1016/j.actbio.2017.01.060

39. Skubis-Sikora A, Sikora B, Witkowska A, et al. Osteogenesis of adipose-derived stem cells from patients with glucose metabolism disorders. Mol Med. 2020;26(1):67. doi: https://doi.org/10.1186/s10020-020-00192-0

40. Madonna R, Renna FV, Cellini C, et al. Age-dependent impairment of number and angiogenic potential of adipose tissue-derived progenitor cells. Eur J Clin Invest. 2011;41(2):126-133. doi: https://doi.org/10.1111/j.1365-2362.2010.02384.x

41. Dzhoyashvili NA, Efimenko AY, Kochegura TN, et al. Disturbed angiogenic activity of adipose-derived stromal cells obtained from patients with coronary artery disease and diabetes mellitus type 2. J Transl Med. 2014;12(1):337. doi: https://doi.org/10.1186/s12967-014-0337-4

42. Rauch A, Haakonsson AK, Madsen JGS, et al. Osteogenesis depends on commissioning of a network of stem cell transcription factors that act as repressors of adipogenesis. Nat Genet. 2019;51(4):716-727. doi: https://doi.org/10.1038/s41588-019-0359-1

43. Wang L, Liu T, Liang R, et al. Mesenchymal stem cells ameliorate β cell dysfunction of human type 2 diabetic islets by reversing β cell dedifferentiation. EBioMedicine. 2020;(51):102615. doi: https://doi.org/10.1016/j.ebiom.2019.102615


Supplementary files

1. Figure 1. The contribution of adipose tissue stem cells to the development of obesity.
Subject
Type Исследовательские инструменты
View (114KB)    
Indexing metadata ▾

Review

For citations:


Uchasova E.G., Dyleva Yu.A., Belik E.V., Gruzdeva O.V. Adipose tissue — derived mesenchymal stem: a role in the pathogenesis of obesity and type 2 diabetes mellitus. Obesity and metabolism. 2023;20(3):245-250. (In Russ.) https://doi.org/10.14341/omet12985

Views: 2156


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)