Adipose tissue — derived mesenchymal stem: a role in the pathogenesis of obesity and type 2 diabetes mellitus
https://doi.org/10.14341/omet12985
Abstract
Adipose tissue-derived mesenchymal stem are adult stem cells endowed with multipotent abilities and immunomodulatory properties, like mesenchymal stem cells of other origins. Numerous studies show that adipose tissue stem cells are involved in the pathological process and can exhibit pro-inflammatory properties and attract inflammatory immune cells in the neighborhood. Subsequently, inflammation creates a microenvironment leading to adipose tissue dysfunction. Examples of such a process are obesity and type 2 diabetes mellitus, in which adipogenesis is disrupted and insulin resistance is initiated. The aim of this review is to understand the role of adipose tissue stem cells in the pathogenesis of obesity and type 2 diabetes mellitus.
About the Authors
E. G. UchasovaRussian Federation
Evgenia G. Uchasova, MD, PhD
6, Sosnovyy Bul’var, 650002 Kemerovo
eLibrary SPIN: 1539-5332
Yu. A. Dyleva
Russian Federation
Yulia A. Dyleva, MD, PhD
Kemerovo
E. V. Belik
Russian Federation
Ekaterina V. Belik, MD, PhD
Kemerovo
eLibrary SPIN: 5705-9143
O. V. Gruzdeva
Russian Federation
Olga V. Gruzdeva, МD, PhD, professor
Kemerovo
eLibrary SPIN: 4322-0963
References
1. Silva KR, Baptista LS. Adipose-derived stromal/stem cells from different adipose depots in obesity development. World J Stem Cells. 2019;11(3):147-166. doi: https://doi.org/10.4252/wjsc.v11.i3.147
2. Wronska A, Kmiec Z. Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol. 2012;205(2):194-208. doi: https://doi.org/10.1111/j.1748-1716.2012.02409.x
3. de Ferranti S, Mozaffarian D. The Perfect Storm: Obesity, Adipocyte Dysfunction, and Metabolic Consequences. Clin Chem. 2008;54(6):945-955. doi: https://doi.org/10.1373/clinchem.2007.100156
4. Global report on diabetes. Geneva: World Health Organization; 2018. License CC BY-NC-SA 3.0 IGO. (In Russ.).
5. Conway B, Rene A. Obesity as a disease: no lightweight matter. Obes Rev. 2004;5(3):145-151. doi: https://doi.org/10.1111/j.1467-789X.2004.00144.x
6. Pestel J, Chehimi M, Bonhomme M, et al. IL-17A contributes to propagation of inflammation but does not impair adipogenesis and/or insulin response, in adipose tissue of obese individuals. Cytokine. 2020;126(3):154865. doi: https://doi.org/10.1016/j.cyto.2019.154865
7. Dedov II, Shestakova MV, Galstyan GR. The prevalence of type 2 diabetes mellitus in the adult population of Russia (NATION study). Diabetes mellitus. 2016;19(2):104-112. (In Russ.). doi: https://doi.org/10.14341/DM2004116-17
8. Agareva M, Stafeev I, Michurina S, et al. Type 2 diabetes mellitus facilitates shift of adipose-derived stem cells ex vivo differentiation toward osteogenesis among patients with obesity. Life. 2022;12(5):688. doi: https://doi.org/10.3390/life12050688
9. Zhu X-Y, Ma S, Eirin A, et al. Functional plasticity of adipose-derived stromal cells during development of obesity. Stem Cells Transl Med. 2016;5(7):893-900. doi: https://doi.org/10.5966/sctm.2015-0240
10. Schipper HS, Prakken B, Kalkhoven E, Boes M. Adipose tissue-resident immune cells: key players in immunometabolism. Trends Endocrinol Metab. 2012;23(8):407-415. doi: https://doi.org/10.1016/j.tem.2012.05.011
11. Gray SL, Vidal-Puig AJ. Adipose tissue expandability in the maintenance of metabolic homeostasis. Nutr Rev. 2008;65(8):S7-S12. doi: https://doi.org/10.1111/j.1753-4887.2007.tb00331.x
12. Zimmerlin L, Donnenberg VS, Rubin JP, Donnenberg AD. Mesenchymal markers on human adipose stem/progenitor cells. Cytometry A. 2013;83(1):134-140. doi: https://doi.org/10.1002/cyto.a.22227
13. Mitchell JB, Mcintosh K, Zvonic S, et al. Immunophenotype of human adipose-derived cells: Temporal changes in stromal-associated and stem cell–associated markers. Stem Cells. 2006;24(2):376-385. doi: https://doi.org/10.1634/stemcells.2005-0234
14. Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International So. Cytotherapy. 2013;15(6):641-648. doi: https://doi.org/10.1016/j.jcyt.2013.02.006
15. Bacakova L, Zarubova J, Travnickova M, et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review. Biotechnol Adv. 2018 36(4):1111-1126. doi: 10.1016/j.biotechadv.2018.03.011.
16. Mohamed-Ahmed S, Fristad I, Lie SA, et al. Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem Cell Res Ther. 2018;9(1):168. doi: https://doi.org/10.1186/s13287-018-0914-1
17. Dubey N, Mishra V, Dubey R, et al. Revisiting the advances in isolation, characterization and secretome of adipose-derived stromal/stem cells. Int J Mol Sci. 2018;19(8):2200. doi: https://doi.org/10.3390/ijms19082200
18. Krawczenko A, Klimczak A. Adipose tissue-derived mesenchymal stem/stromal cells and their contribution to angiogenic processes in tissue regeneration. Int J Mol Sci. 2022;23(5):2425. doi: https://doi.org/10.3390/ijms23052425
19. Pellegrinelli V, Carobbio S, Vidal-Puig A. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia. 2016;59(6):1075-1088. doi: https://doi.org/10.1007/s00125-016-3933-4
20. Nakagami H, Maeda K, Morishita R, et al. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue–derived stromal cells. Arterioscler Thromb Vasc Biol. 2005;25(12):2542-2547. doi: https://doi.org/10.1161/01.ATV.0000190701.92007.6d
21. Dykstra JA, Facile T, Patrick RJ, et al. Concise review: Fat and furious: harnessing the full potential of adipose-derived stromal vascular fraction. Stem Cells Transl Med. 2017;6(4):1096-1108. doi: https://doi.org/10.1002/sctm.16-0337.
22. Frazier TP, Gimble JM, Devay JW, et al. Body mass index affects proliferation and osteogenic differentiation of human subcutaneous adipose tissue-derived stem cells. BMC Cell Biol. 2013;14(1):34. doi: https://doi.org/10.1186/1471-2121-14-34
23. Oliva-Olivera W, Gea AL, Lhamyani S, et al. Differences in the osteogenic differentiation capacity of omental adipose-derived stem cells in obese patients with and without metabolic syndrome. Endocrinology. 2015;156(12):4492-4501. doi: https://doi.org/10.1210/en.2015-1413
24. Ambrosi TH, Scialdone A, Graja A, et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell. 2017;20(6):771-784.e6. doi: https://doi.org/10.1016/j.stem.2017.02.009
25. Wu C-L, Diekman BO, Jain D, Guilak F. Diet-induced obesity alters the differentiation potential of stem cells isolated from bone marrow, adipose tissue and infrapatellar fat pad: the effects of free fatty acids. Int J Obes. 2013;37(8):1079-1087. doi: https://doi.org/10.1038/ijo.2012.171
26. Isakson P, Hammarstedt A, Gustafson B, Smith U. Impaired preadipocyte differentiation in human abdominal obesity. Diabetes. 2009;58(7):1550-1557. doi: https://doi.org/10.2337/db08-1770
27. Pérez LM, Suárez J, Bernal A, et al. Obesity-driven alterations in adipose-derived stem cells are partially restored by weight loss. Obesity. 2016;24(3):661-669. doi: https://doi.org/10.1002/oby.21405
28. Oñate B, Vilahur G, Ferrer‐Lorente R, et al. The subcutaneous adipose tissue reservoir of functionally active stem cells is reduced in obese patients. FASEB J. 2012;26(10):4327-4336. doi: https://doi.org/10.1096/fj.12-207217
29. Togliatto G, Dentelli P, Gili M, et al. Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing miR-126 content: impact on clinical applications. Int J Obes. 2016;40(1):102-111. doi: https://doi.org/10.1038/ijo.2015.123
30. Silva KR, Liechocki S, Carneiro JR, et al. Stromal-vascular fraction content and adipose stem cell behavior are altered in morbid obese and post bariatric surgery ex-obese women. Stem Cell Res Ther. 2015;6(1):72. doi: https://doi.org/10.1186/s13287-015-0029-x
31. Serena C, Keiran N, Ceperuelo-Mallafre V, et al. Obesity and type 2 diabetes alters the immune properties of human adipose derived stem cells. Stem Cells. 2016;34(10):2559-2573. doi: https://doi.org/10.1002/stem.2429
32. Pérez LM, de Lucas B, Lunyak VV, Gálvez BG. Adipose stem cells from obese patients show specific differences in the metabolic regulators vitamin D and Gas5. Mol Genet Metab Reports. 2017;12(10):51-56. doi: https://doi.org/10.1016/j.ymgmr.2017.05.008
33. Frank BHu. Globalization of Diabetes: The role of diet, lifestyle, and genes. Diabetes Care. 2011;34(6):1249-1257. doi: https://doi.org/10.2337/dc11-0442
34. Keane KN, Calton EK, Carlessi R, et al. The bioenergetics of inflammation: insights into obesity and type 2 diabetes. Eur J Clin Nutr. 2017;71(7):904-912. doi: https://doi.org/10.1038/ejcn.2017.45
35. van Tienen FHJ, van der Kallen CJH, Lindsey PJ, et al. Preadipocytes of type 2 diabetes subjects display an intrinsic gene expression profile of decreased differentiation capacity. Int J Obes. 2011;35(9):1154-1164. doi: https://doi.org/10.1038/ijo.2010.275
36. Ge Q, Zhang H, Hou J, et al. VEGF secreted by mesenchymal stem cells mediates the differentiation of endothelial progenitor cells into endothelial cells via paracrine mechanisms. Mol Med Rep. 2017;35(9):1154-1164. doi: https://doi.org/10.3892/mmr.2017.8059
37. Bonventre J V. Microvesicles from mesenchymal stromal cells protect against acute Kidney Injury. J Am Soc Nephrol. 2009;20(5):927-928. doi: https://doi.org/10.1681/ASN.2009030322
38. Cheng N-C, Lin W-J, Ling T-Y, Young T-H. Sustained release of adipose-derived stem cells by thermosensitive chitosan/gelatin hydrogel for therapeutic angiogenesis. Acta Biomater. 2017;51(5):258-267. doi: https://doi.org/10.1016/j.actbio.2017.01.060
39. Skubis-Sikora A, Sikora B, Witkowska A, et al. Osteogenesis of adipose-derived stem cells from patients with glucose metabolism disorders. Mol Med. 2020;26(1):67. doi: https://doi.org/10.1186/s10020-020-00192-0
40. Madonna R, Renna FV, Cellini C, et al. Age-dependent impairment of number and angiogenic potential of adipose tissue-derived progenitor cells. Eur J Clin Invest. 2011;41(2):126-133. doi: https://doi.org/10.1111/j.1365-2362.2010.02384.x
41. Dzhoyashvili NA, Efimenko AY, Kochegura TN, et al. Disturbed angiogenic activity of adipose-derived stromal cells obtained from patients with coronary artery disease and diabetes mellitus type 2. J Transl Med. 2014;12(1):337. doi: https://doi.org/10.1186/s12967-014-0337-4
42. Rauch A, Haakonsson AK, Madsen JGS, et al. Osteogenesis depends on commissioning of a network of stem cell transcription factors that act as repressors of adipogenesis. Nat Genet. 2019;51(4):716-727. doi: https://doi.org/10.1038/s41588-019-0359-1
43. Wang L, Liu T, Liang R, et al. Mesenchymal stem cells ameliorate β cell dysfunction of human type 2 diabetic islets by reversing β cell dedifferentiation. EBioMedicine. 2020;(51):102615. doi: https://doi.org/10.1016/j.ebiom.2019.102615
Supplementary files
|
1. Figure 1. The contribution of adipose tissue stem cells to the development of obesity. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(114KB)
|
Indexing metadata ▾ |
Review
For citations:
Uchasova E.G., Dyleva Yu.A., Belik E.V., Gruzdeva O.V. Adipose tissue — derived mesenchymal stem: a role in the pathogenesis of obesity and type 2 diabetes mellitus. Obesity and metabolism. 2023;20(3):245-250. (In Russ.) https://doi.org/10.14341/omet12985

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).