Preview

Obesity and metabolism

Advanced search

Relationship of leptin concentrations as part of cytokine response to hyperlipoproteidemia in practically healthy northerners

https://doi.org/10.14341/omet12952

Abstract

BACKGROUND: Cytokines secrete all cells when there is a threat of damage to it. Leptin, having all the properties of a cytokine, produces fat cells. It was of interest to identify the ratio of leptin concentrations and cytokines activating preventive inflammatory reactions in the blood of practically healthy Northerners with hyperlipoproteidemia.

AIM: To identify the ratio of concentrations of leptin and IL-1ß, TNF-α, IL-6 and IL-10 in the blood of practically healthy Northerners with hyperlipoproteidemia.

MATERIAL AND METHODS: A survey of 286 practically healthy people aged 35-55 years living in the Arkhangelsk region was conducted. The body mass index in persons of the first group (n=211) was in the range of 19.5-26.8 kg/m2 and corresponded to the norm; and 75 people of the second group (body mass index 31-40 kg/m2). Concentrations of leptin, interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and interleukin-10 (IL-10) were determined in the blood by ­enzyme immunoassay on an automatic Evolis enzyme immunoassay analyzer from Bio-Rad (Germanytotal ­cholesterol (OH), apolipoprotein A-1 (ApoA-1), apolipoprotein B (ApoV), high-density lipoproteins (HDL), low-density lipoproteins (LDL), very low-density lipoproteins (VLDL), oxidized low-density lipoproteins (LDL), triglycerides (TG), phospholipids (FL) on the biochemical analyzer «Stat fax 1904 Plus» of the company «Awareness Technology, Inc.» USA.

RESULTS: Fasting hyperlipoproteidemia in practically healthy people is associated with an increase in the concentration of leptin in the blood within the physiological content. The closest relationship between an increase in leptin levels and concentrations of proinflammatory cytokines IL-1ß, TNF-α and IL-6 was established (r=0.68, 0.74 and 0.83, respectively; p<0.001). The severity of the reaction of proinflammatory cytokines is regulated by a parallel increase in the secretion of anti-inflammatory IL-10 (r=0.62; p<0.001).

CONCLUSION: It should be recognized that the stimulation of leptin secretion is provided by the influence of more intense signals initiating a cytokine reaction. In order to ensure the secretion of leptin, compared with that of proinflammatory cytokines, the influence of more pronounced signals associated with an increased need for metabolic energy is required. Higher concentrations of leptin were found with a low plasma content of HDL, ApoA-1 ligands and ApoB; The opinion is substantiated that leptin in physiological concentrations regulates the use of the depot of the energy substrate of adipose tissue by increasing its secretion with a low content of HDL in plasma, ligands of lipid transport forms.

About the Authors

A. V. Samodova
N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Anna V. Samodova, PhD in biology

Scopus Author ID: 5534446910

249 Lomonosova Avenue, 163000 Arhangelsk



L. K. Dobrodeeva
N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Liliya K. Dobrodeeva, MD, PhD, Professor

Scopus Author ID: 6603579532 

Arhangelsk



K. O. Pashinskaya
N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Ksenia O. Pashinskaya

copus Author ID: 57261870200

Arhangelsk



N. P. Geshavets
N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Natalya P. Geshavets

Scopus Author ID: 57721659000 

Arhangelsk



References

1. Zhang F, Basinski MB, Beals JM, et al. Crystal structure of the obese protein leptin-E100. Nature. 1997;387:206-209. doi: https://doi.org/10.1038/387206a0

2. Raman R, Khanal S. Leptin in Atherosclerosis: Focus on Macrophages, Endothelial and Smooth Muscle Cells. International Journal of Molecular Sciences. 2021;22(11):5446. doi: https://doi.org/10.3390/ijms22115446

3. Chaulin AM. The role of leptin in the pathogenesis of atherosclerosis: emphasis on the interaction of leptin with macrophages. Scientific Review. Biological science. 2021;3:5-10. doi: https://doi.org/10.17513/srbs.1228 (In Russ.)

4. Pausowa Z, Deslauries B, Gaudet D, et al. Role of tumor necrosis factor-alpha gene locus in obesity and obesity-associated hypertension in French Canadians. Hypertension. 2000.36 (1):14-19. doi: https://doi.org/10.1161/01.hyp.36.1.14

5. Schwartz V Regulation of metabolic processes by interleukin. Cytokines and inflammation. 2009;3:3-10. (In Russ.)

6. Ben-Hadi-Khalifa-Kechiche S, Cornillet-Lefebvre P, Abboud N, et al. Interleukin-10 microsatellite variants and the risk of acute coronary syndrome among Tunisiaans. In. J Immunol. 2011;38(1):37–38. doi: https://doi.org/10.1111/j.1744-313X.2010.00967.x

7. Priya R, Saugat K. Leptin in atherosclerosis: focus on macrophages, endothelial and smooth muscle cells. International Journal of Molecular Sciences. 2021;22(11):5446. doi: https://doi.org/10.3390/ijms22115446

8. Naylor C, Petri WA. Leptin regulation of immune responses. Trends in molecular medicine. 2016;22(2):88-98. doi: https://doi.org/10.1016/j.molmed.2015.12.001

9. La Cava A. Leptin in inflammation and autoimmunity. Cytokine. 2017;98:51–58. doi: https://doi.org/10.1016/j.cyto.2016.10.011

10. Obradovic M, Sudar-Milovanovic E, Soskic S, et al. Leptin and obesity: role and clinical implication. Front Endocrinol (Lausanne). 2021;18(12):585887. doi: https://doi.org/10.3389/fendo.2021.585887

11. Zhang F, Chen Y, Heiman M, Dimarchi R. Leptin: structure, function and biology. Vitam. Horm. 2005;71:345–372. doi: https://doi.org/10.1016/S0083-6729(05)71012-8

12. Monteiro L, Silva Pereira JA, Palhinha L, et al. Leptin in the regulation of the immunometabolism of adipose tissue-macrophages. Journal of Leukocyte Biology. 2019;106:3703-716. doi: https://doi.org/10.1002/JLB.MR1218-478R

13. Saxton RA, Caveney NA, Moya-Garzon MD, et al. Structural insights into the mechanism of leptin receptor activation. Nat. Commun. 2023;14(1):1797. doi: https://doi.org/10.1038/s41467-023-37169-6

14. Cabrero A, Cubero M, Llaverías G, et al. Leptin downregulates peroxisome proliferator-activated receptor gamma (PPAR-gamma) mRNA levels in primary human monocyte-derived macrophages. Mol. Cell Biochem. 2005;275(1–2):173-179. doi: https://doi.org/10.1007/s11010-005-1353-8

15. Juntilla MM, Koretzky GA. Critical roles of the PI3K/Akt signaling pathway in T-cell development. Immunology Letters. 2008;116:104-110. doi: https://doi.org/10.1016/j.imlet.2007.12.008

16. Hongo S, Watanabe T, Arita S, et al. Leptin modulates ACAT1 expression and cholesterol efflux from human macrophages. Am J Physio. Endocrino. Metab. 2009;297(2):474–482. doi: https://doi.org/10.1152/ajpendo.90369.2008

17. Khoo J, Mahoney E, Witztum J. Secretion of lipoprotein lipase by macrophages in culture. J Bio. Chem.1981;256:7105-7108

18. Titov VN, Sanfirova VM. Blood Fibronectin: biological role and diagnostic significance of Sanfirov. Ter. archiv. 1984;7:147-149. (In Russ.)

19. Titov VN, Tvorogova MG, Nikitin SV. Lipoprotein(a) — risk factor for coronary atherosclerosis. Cardiology. 1992;7:112–115. (In Russ.)

20. Seco Y, Sato O, Takagi A, et al. Restricted usage of T-cell receptor Valpha-Vbeta genes in infiltrating cells in aortic tissue of patients with Takayasu’s arteritis. Circulation. 1996;93:1788–1790. doi: https://doi.org/10.1161/01.cir.93.10.1788

21. Empana J, Jouven X, Canoui-Poitrine F, et al. C-reactive-protein, interleukin 6, fibrinogen and risk of sudden death in European middle-agen men: The PRIME study. Arteriosclerosis, Thrombosis, and Vasc. Biol. 2010;30(10):2047–2052. doi: https://doi.org/10.1161/ATVBAHA.110.208785

22. Garlanda C, Dinarello C, Mantovani A. The interleukin-1 family: back to the future. Immunity. 2013;39(6):1003-1018. doi: https://doi.org/10.1016/j.immuni.2013.11.010

23. Monteiro L, Prodonoff J, Aguiar C, et al. Leptin signaling suppression in macrophages improves immunometabolic outcomes in obesity. Diabetes. 2022; 71(7):1546-1561. doi: https://doi.org/10.2337/db21-0842

24. Montier Y, Lorentz A, Kramer S, et al. Central role of IL-6 and MMP-1 for cross talk between human intestinal mast cells and human intestinal fibroblast. Immunology. 2012;217(9):912-919. doi: https://doi.org/10.1016/j.imbio.2012.01.003

25. Dhus O, Bunk S, Aulock S., Hermann C. IL-10 release requires stronger toll-like receptor 4-triggering than TNF: a possible explanation for the selective effects of heterozygous TLR4 polymorphism Asp(299)Gly on IL-10 release. Immunology. 2008;213(8): 621-627. doi: https://doi.org/10.1016/j.imbio.2008.03.001

26. Lu M, Dawicki W, Zhang X, et al. Therapeutic induction of tolerance by IL-10-differentiated dendritic cells in house mite-asthma. Allergy. 2011;66(5):612-620. doi: https://doi.org/10.1111/j.1398-9995.2010.02526.x

27. Swennen E, Bast A, Dagnelie P. Immunoregulatory effects of adenosine 5-triphosphate on cytokine release from stimulated whole blood. Eur J Immunol. 2005;35:852-858. doi: https://doi.org/10.1002/eji.200425423

28. Barbier S, Chatre L, Bras M, et al. Caspase-independent type III programmed cell death in chronic lymphocytic leukemia: the key role of the F-actin cytoskeleton. Haematologica. 2009;94(4):507–517. doi: https://doi.org/10.3324/haematol.13690

29. Iang Y, Wang M, Huang K, et al Oxidized low-density lipoprotein induces secretion of interleukin-1ß by macrophages via reactive oxygen species-dependent NLRP3 inflammasome activation. Biochem and Biophys. Res. Commun. 2012;425 (2):121-126. doi: https://doi.org/10.1016/j.bbrc.2012.07.011

30. Zarkesh-Esfahani H, Pockley A, Wu Z, et al. Leptin indirectly activates human neutrophils via induction of TNF-alpha. J. Immunol. 2004;172(3):1809–1814. doi: https://doi.org/10.4049/jimmunol.172.3.1809

31. Tian Z, Sun R, Wei H, Gao B. Impaired natural killer (NK) cell activity in leptin receptor deficient mice: leptin as a critical regulator in NK cell development and activation. Biochem. Biophys. Res. Commun. 2002;298:297–302. doi: https://doi.org/10.1016/s0006-291x(02)02462-2

32. Amorim NRT, Souza-Almeida G, Luna-Gomes T, et al. Leptin elicits in vivo eosinophil migration and activation: key role of mast cell-derived PGD2. Front Endocrinol (Lausanne). 2020;11:572113. doi: https://doi.org/10.3389/fendo.2020.572113

33. Suzukawa M, Nagase H, Ogahara I, et al. Leptin enhances survival and induces migration, degranulation, and cytokine synthesis of human basophils. J. Immunol. 2011;186(9): 5254–5260. doi: https://doi.org/10.4049/jimmunol.1004054

34. La C, Matarese G. The weight of leptin in immunity. Nat. Rev. Immunol. 2004;4 (5):371–379. doi: https://doi.org/10.1038/nri1350

35. Frasca D, Ferracci F, Diaz A, et al. Obesity decreases B cell responses in young and elderly individuals. Obesity (Silver Spring). 2016;24(3):615–625. doi: https://doi.org/10.1002/oby.21383

36. Chen H, Qi J, Liu T, et al. Leptin accelerates B cell dysfunctions via activating JAK/STAT3/5 and ERK1/2 pathways in patients with systemic lupus erythematosus. Clin. Exp. Rheumatol. 2022;40(11):2125-2132. doi: https://doi.org/10.55563/clinexprheumatol/84syjo

37. Souza-Almeida G, D’Avila H, Almeida P, et al. Leptin Mediates In Vivo Neutrophil Migration: Involvement of Tumor Necrosis Factor-Alpha and CXCL1. Front Immunol. 2018;9:111. doi: https://doi.org/10.3389/fimmu.2018.00111

38. Zieba DA, Biernat W, Barć J. Roles of leptin and resistin in metabolism, reproduction, and leptin resistance. Domest. Anim. Endocrinol. 2020;73:106472. doi: https://doi.org/10.1016/j.domaniend.2020

39. Weber N, Klein E, Stereospecific incorporation of palmitoyl, oleoyl and linoleoyl moieties into adipose tissue triacylglycerols of rats results in constant sn-1:sn-2:sn-3 in rats fed rapeseed, olive, conventional or high oleic sunflower oils, but not in those fed coriander oil. J. Nutr. 2003;133(2): 435-441. doi: https://doi.org/10.1093/jn/133.2.435

40. Fernandes das Neves M, Batica J, Alves J. The role of high-density lipoprotein in the regulation of the immune response: implications for atherosclerosis and autoimmunity. Immunology. 2021;164(2):231-241. doi: https://doi.org/10.1111/imm.13348

41. Smolen J, Shohet S. Remodeling of granulocyte membrane fatty acids during phagocytosis. J. Clin. Invest. 1974;53(3):726-734. doi: https://doi.org/10.1172/JCI107611

42. Schinzari F, Tesauro M, Rovella V, et al. Leptin stimulates both endothelin-1 and nitric oxide activity in lean subjects but not in patients with obesity-related metabolic syndrome. J. Clin. Endocrinol. Metab. 2013;98(3):1235–1241. doi: https://doi.org/10.1210/jc.2012-3424

43. Becerril S, Rodríguez A, Catalán V, et al. Functional relationship between leptin and nitric oxide in metabolism. Nutrients. 2019;11(9):2129. doi: https://doi.org/10.3390/nu11092129

44. Sanches P, de Mello M, Elias N, et al. Hyperleptinemia: Implications on the inflammatory state and vascular protection in obese adolescents submitted to an interdisciplinary therapy. Inflammation. 2014;37(1):35–43. doi: https://doi.org/10.1007/s10753-013-9709-9

45. Xiao W, Li J, Feng T, Jin L. Circulating adipokine concentrations and the risk of venous thromboembolism: a mendelian randomization and mediation analysis. Front. Genet. 2023;14:1113111. doi: https://doi.org/10.3389/fgene.2023.1113111

46. Buis D, Christen T, Smit R, et al. The association between leptin concentration and blood coagulation: Results from the NEO study. Thromb. Res. 2020;188:44–48. doi: https://doi.org/10.1016/j.thromres.2020.01.021


Supplementary files

Review

For citations:


Samodova A.V., Dobrodeeva L.K., Pashinskaya K.O., Geshavets N.P. Relationship of leptin concentrations as part of cytokine response to hyperlipoproteidemia in practically healthy northerners. Obesity and metabolism. 2024;21(2):107-115. (In Russ.) https://doi.org/10.14341/omet12952

Views: 457


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)