Hyperuricemia and gout: effects on bone and articular cartilage (literature review)
https://doi.org/10.14341/omet12894
Abstract
Gout is a disease characterized by deposition of sodium monourate crystals in tissues which is the reason of inflammation among persons with hyperuricemia (HU). The prevalence of HU, which can be considered the first stage of gout formation, varies in different countries. Despite this, only a small number of persons with HU have been shown to develop symptoms of gout. Recent data suggest that HU is an independent risk factor for cartilage and bone damage. UA, both in the form of crystals and in a dissolved form, activates damage and potentiates cell death by releasing reactive oxygen species, activating the necroptosis pathway, neutrophil traps, synthesis of pro-inflammatory cytokines, and other pathogenetic mechanisms that cause the negative effects of HU and gout on articular cartilage and subchondral bone. The association of HU and osteoarthritis (OA) is well known and based on the common pathogenesis, but the direction of this relationship is still a debatable issue. The accumulated data suggest the need for a deeper study of the relationship of gout and asymptomatic HU with pathological processes leading to the development and progression of OA and disorders of bone metabolism.
About the Authors
E. V. CheremushkinaRussian Federation
Elena V. Cheremushkina, MD
34A, Kashirskoe Shosse, Moscow 115522
Scopus Author ID: 57244090500;
eLibrary SPIN: 3202-1421
M. S. Eliseev
Maksim S. Eliseev, MD, PhD
Moscow
eLibrary SPIN: 2524-7320
References
1. Nasonova VA, Barskova VG. Early diagnostic and treatment of gout – is scientifically based reguirements for improvement of labour and living prognosis of patients. Rheumatology Science and Practice. 2004;42(1):5-7. (In Russ.). doi: https://doi.org/10.14412/1995-4484-2004-1374
2. Dalbeth N, Phipps-Green A, Frampton C, et al. Relationship between serum urate concentration and clinically evident incident gout: an individual participant data analysis. Ann Rheum Dis. 2018;77(7):1048-1052. doi: https://doi.org/10.1136/annrheumdis-2017-212288
3. Dalbeth N, House ME, Aati O, et al. Urate crystal deposition in asymptomatic hyperuricaemia and symptomatic gout: a dual energy CT study. Ann Rheum Dis. 2015;74(5):908-911. doi: https://doi.org/10.1136/annrheumdis-2014-20639.
4. Zhelyabina OV, Eliseev MS. Xanthine oxidase inhibitors in asymptomatic hyperuricemia. Modern Rheumatology Journal. 2019;13(4):137-142. (In Russ.). doi: https://doi.org/10.14412/1996-7012-2019-4-137-142
5. Yeliseyev MS. Hyperuricemia as the Factor of Kidney Damage and the Target of Therapy. Eff Pharmacother. 2020;16(6):30-35. (In Russ.). doi: https://doi.org/10.33978/2307-3586-2020-16-6-30-35
6. Ragab G, Elshahaly M, Bardin T. Gout: An old disease in new perspective — A review. J Adv Res. 2017;8(5):495-511. doi: https://doi.org/10.1016/j.jare.2017.04.008
7. Narang RK, Dalbeth N. Pathophysiology of Gout. Semin Nephrol. 2020;40(6):550-563. doi: https://doi.org/10.1016/j.semnephrol.2020.12.001.
8. Chhana A, Pool B, Wei Y, et al. Human Cartilage Homogenates Influence the Crystallization of Monosodium Urate and Inflammatory Response to Monosodium Urate Crystals: A Potential Link Between Osteoarthritis and Gout. Arthritis Rheumatol. 2019;71(12):2090-2099. doi: https://doi.org/10.1002/art.41038
9. Pascual E, Addadi L, Andrés M, Sivera F. Mechanisms of crystal formation in gout-a structural approach. Nat Rev Rheumatol. 2015;11(12):725-730. doi: https://doi.org/10.1038/nrrheum.2015.125
10. Yip K, Cohen RE, Pillinger MH. Asymptomatic hyperuricemia: is it really asymptomatic? Curr Opin Rheumatol. 2020;32(1):71-79. doi: https://doi.org/10.1097/BOR.0000000000000679
11. Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007-2008. Arthritis Rheum. 2011;63(10):3136-3141. doi: https://doi.org/10.1002/art.30520
12. B L, T W, HN Z, et al. The prevalence of hyperuricemia in China: a meta-analysis. BMC Public Health. 2011;11(1):832. doi: https://doi.org/10.1186/1471-2458-11-832
13. Qiu L, Cheng X, Wu J, et al. Prevalence of hyperuricemia and its related risk factors in healthy adults from Northern and Northeastern Chinese provinces. BMC Public Health. 2013;13(1):664. doi: https://doi.org/10.1186/1471-2458-13-664
14. Shalnova SA, Deev AD, Artamonov GV, et al. Hyperuricemia and its correlates in the Russian population (results of ESSE-RF epidemiological study). Rational Pharmacotherapy in Cardiology. 2014;10(2):153-159. (In Russ.). doi: https://doi.org/10.20996/1819-6446-2014-10-2-153-159
15. Braga TT, Forni MF, Correa-Costa M, et al. Soluble uric acid activates the NLRP3 inflammasome. Sci Rep. 2017;7(1):39884. doi: https://doi.org/10.1038/srep39884
16. Al-Awad D, Al-Emadi N, Abu-Madi M, et al. The Role of Soluble Uric Acid in Modulating Autophagy Flux and Inflammasome Activation during Bacterial Infection in Macrophages. Biomedicines. 2020;8(12):598. doi: https://doi.org/10.3390/biomedicines8120598
17. White J, Sofat R, Hemani G, et al. Plasma urate concentration and risk of coronary heart disease: a Mendelian randomisation analysis. Lancet Diabetes Endocrinol. 2016;4(4):327-336. doi: https://doi.org/10.1016/S2213-8587(15)00386-1
18. Harroud A, Richards JB, Baranzini SE. Mendelian randomization study shows no causal effects of serum urate levels on the risk of MS. Neurol - Neuroimmunol Neuroinflammation. 2021;8(1):e920. doi: https://doi.org/10.1212/NXI.0000000000000920
19. Sun Y, Brenner H, Sauerland S, et al. Serum uric acid and patterns of radiographic osteoarthritis--the Ulm Osteoarthritis Study. Scand J Rheumatol. 2000;29(6):380-386. doi: https://doi.org/10.1080/030097400447589
20. Denoble AE, Huffman KM, Stabler TV, et al. Uric acid is a danger signal of increasing risk for osteoarthritis through inflammasome activation. Proc Natl Acad Sci USA. 2011;108(5):2088-2093. doi: https://doi.org/10.1073/pnas.1012743108
21. Wang S, Pillinger MH, Krasnokutsky S, et al, The association between asymptomatic hyperuricemia and knee osteoarthritis: data from the third National Health and Nutrition Examination Survey. Osteoarthritis Cartilage. 2019;27(9):1301-1308. doi: https://doi.org/10.1016/j.joca.2019.05.013
22. Duncan R, Peat G, Thomas E, et al. Symptoms and radiographic osteoarthritis: not as discordant as they are made out to be? Ann Rheum Dis. 2007;66(1):86-91. doi: https://doi.org/10.1136/ard.2006.052548.
23. Yao X, Chen L, Xu H, Zhu Z. The Association between serum uric acid and bone mineral density in older adults. Int J Endocrinol. 2020;2020(1):1-7. doi: https://doi.org/10.1155/2020/3082318
24. Veronese N, Carraro S, Bano G, et al. Hyperuricemia protects against low bone mineral density, osteoporosis and fractures: a systematic review and meta-analysis. Eur J Clin Invest. 2016;46(11):920-930. doi: https://doi.org/10.1111/eci.12677
25. Zhang D, Bobulescu IA, Maalouf NM, et al. Relationship between serum uric acid and bone mineral density in the general population and in rats with experimental hyperuricemia. J Bone Miner Res. 2015;30(6):992-999. doi: https://doi.org/10.1002/jbmr.2430
26. Xiong A, Yao Q, He J, et al. No causal effect of serum urate on bone-related outcomes among a population of postmenopausal women and elderly men of Chinese Han ethnicity--a Mendelian randomization study. Osteoporos Int. 2016;27(3):1031-1039. doi: https://doi.org/10.1007/s00198-015-3341-5
27. Lee YH, Song GG. Uric acid level, gout and bone mineral density: A Mendelian randomization study. Eur J Clin Invest. 2019;49(9):e13156. doi: https://doi.org/10.1111/eci.13156
28. McGill NW, Dieppe PA. Evidence for a promoter of urate crystal formation in gouty synovial fluid. Ann Rheum Dis. 1991;50(8):558-561. doi: https://doi.org/10.1136/ard.50.8.558
29. Burt HM, Dutt YC. Growth of monosodium urate monohydrate crystals: effect of cartilage and synovial fluid components on in vitro growth rates. Ann Rheum Dis. 1986;45(10):858-864. doi: https://doi.org/10.1136/ard.45.10.858
30. Laurent TC. Solubility of sodium urate in the presence of chondroitin-4-sulphate. Nature. 1964;202(4939):1334-1334. doi: https://doi.org/10.1038/2021334a0
31. Tak H-K, Cooper SM, Wilcox WR. Studies on the nucleation of monsodium urate at 37°C. Arthritis Rheum. 1980;23(5):574-580. doi: https://doi.org/10.1002/art.1780230509
32. Zhao J, Wei K, Jiang P, et al. Inflammatory response to regulated cell death in gout and its functional implications. Front Immunol. 2022;13(5):574-580. doi: https://doi.org/10.3389/fimmu.2022.888306
33. El-Zawawy H, Mandell BF. Update on crystal-induced arthritides. Clin Geriatr Med. 2017;33(1):135-144. doi: https://doi.org/10.1016/j.cger.2016.08.010
34. Honarpisheh M, Foresto-Neto O, Desai J, et al. Phagocytosis of environmental or metabolic crystalline particles induces cytotoxicity by triggering necroptosis across a broad range of particle size and shape. Sci Rep. 2017;7(1):15523. doi: https://doi.org/10.1038/s41598-017-15804-9
35. Zhao J, Wei K, Jiang P, et al. Inflammatory Response to Regulated Cell Death in Gout and Its Functional Implications. Front Immunol. 2022;13(5):574-580. doi: https://doi.org/10.3389/fimmu.2022.888306
36. Meng Y, Davies KA, Fitzgibbon C, et al. Human RIPK3 maintains MLKL in an inactive conformation prior to cell death by necroptosis. Nat Commun. 2021;12(1):6783. doi: https://doi.org/10.1038/s41467-021-27032-x
37. Nasonov EL. The role of interleukin 1 in the development of human diseases. Rheumatology Science and Practice. 2018;56(1):19-27. (In Russ.). doi: https://doi.org/10.14412/1995-4484-2018-19-27
38. Ortiz-Bravo E, Sieck MS, Schumacher HR Jr. Changes in the proteins coating monosodium urate crystals during active and subsiding inflammation. Immunogold studies of synovial fluid from patients with gout and of fluid obtained using the rat subcutaneous air pouch model. Arthritis Rheum. 1993;36(9):1274-1285. doi: https://doi.org/10.1002/art.1780360912
39. Bodofsky S, Merriman TR, Thomas TJ, Schlesinger N. Advances in our understanding of gout as an auto-inflammatory disease. Semin Arthritis Rheum. 2020;50(5):1089-1100. doi: https://doi.org/10.1016/j.semarthrit.2020.06.015
40. Franco RN, Cintra Neto PF, Pimentel ER, et al. Correlation between inflammatory cells and sulfated glycosaminoglycan concentration in synovial fluid of subjects with secondary knee osteoarthritis. J Rheumatol. 2008;35(6):1096-1101.
41. Dalbeth N, Gosling AL, Gaffo A, Abhishek A. Gout. Lancet. 2021;397(10287):1843-1855. doi: https://doi.org/10.1016/S0140-6736(21)00569-9
42. Rada B. Neutrophil extracellular traps and microcrystals. J Immunol Res. 2017;2017:1-7. doi: https://doi.org/10.1155/2017/2896380
43. Murao A, Aziz M, Wang H, et al. Release mechanisms of major DAMPs. Apoptosis. 2021;26(3-4):152-162. doi: https://doi.org/10.1007/s10495-021-01663-3
44. Döring Y, Soehnlein O, Weber C. Neutrophil Extracellular Traps in Atherosclerosis and Atherothrombosis. Circ Res. 2017;120(4):736-743. doi: https://doi.org/10.1161/CIRCRESAHA.116.309692
45. Nakazawa D, Kumar SV, Marschner J, et al. Histones and neutrophil extracellular traps enhance tubular necrosis and remote organ injury in ischemic AKI. J Am Soc Nephrol. 2017;28(6):1753-1768. doi: https://doi.org/10.1681/ASN.2016080925
46. Abhishek A. New urate-lowing therapies. Curr Opin Rheumatol. 2018;30(2):177-182. doi: https://doi.org/10.1097/BOR.0000000000000476
47. Renaudin F, Orliaguet L, Castelli F, et al. Gout and pseudogout-related crystals promote GLUT1-mediated glycolysis that governs NLRP3 and interleukin-1β activation on macrophages. Ann Rheum Dis. 2020;79(11):1506-1514. doi: https://doi.org/10.1136/annrheumdis-2020-217342
48. Muehleman C, Li J, Aigner T, et al. Association between crystals and cartilage degeneration in the ankle. J Rheumatol. 2008;35(6):1108-1117.
49. Kimble RB, Matayoshi AB, Vannice JL, et al. Management of osteoporosis in postmenopausal women: the 2021 position statement of The North American Menopause Society. Menopause. 2021;28(9):973-997. doi: https://doi.org/10.1097/GME.0000000000001831
50. Kimble RB, Matayoshi AB, Vannice JL, et al. Simultaneous block of interleukin-1 and tumor necrosis factor is required to completely prevent bone loss in the early postovariectomy period. Endocrinology. 1995;136(7):3054-3061. doi: https://doi.org/10.1210/endo.136.7.7789332
51. Patel S, Homaei A, El-Seedi HR, Akhtar N. Cathepsins: Proteases that are vital for survival but can also be fatal. Biomed Pharmacother. 2018;105(9):526-532. doi: https://doi.org/10.1016/j.biopha.2018.05.148
52. Dalbeth N, Pool B, Gamble GD, et al. Cellular characterization of the gouty tophus: a quantitative analysis. Arthritis Rheum. 2010;62(5):1549-1556. doi: https://doi.org/10.1002/art.27356.
53. Dalbeth N, Smith T, Nicolson B, et al. Enhanced osteoclastogenesis in patients with tophaceous gout: urate crystals promote osteoclast development through interactions with stromal cells. Arthritis Rheum. 2008;58(6):1854-1865. doi: https://doi.org/10.1002/art.23488.
54. Lee SJ, Nam KI, Jin HM, et al. Bone destruction by receptor activator of nuclear factor κB ligand-expressing T cells in chronic gouty arthritis. Arthritis Res Ther. 2011;13(5):R164. doi: https://doi.org/10.1186/ar3483.
55. Terkeltaub RA. Clinical practice. Gout. N Engl J Med. 2003;349(17):1647-1655. doi: https://doi.org/10.1056/NEJMcp030733.
56. Cordova Sanchez A, Bisen M, Khokhar F, et al. Diagnosing Spinal Gout: A Rare Case of Back Pain and Fever. Case Rep Rheumatol. 2021;2021(9):1-5. doi: https://doi.org/10.1155/2021/7976420
57. Petreski T, Ekart R, Hojs R, Bevc S. Hyperuricemia, the heart, and the kidneys — to treat or not to treat? Ren Fail. 2020;42(1):978-986. doi: https://doi.org/10.1080/0886022X.2020.1822185
58. Chalès G. How should we manage asymptomatic hyperuricemia? Joint Bone Spine. 2019;86(4):437-443. doi: https://doi.org/10.1016/j.jbspin.2018.10.004
59. Liang X, Liu X, Li D, et al. Effectiveness of Urate-Lowering Therapy for Renal Function in Patients With Chronic Kidney Disease: A Meta-Analysis of Randomized Clinical Trials. Front Pharmacol. 2022;13(9):1-5. doi: https://doi.org/10.3389/fphar.2022.798150
60. van der Pol KH, Wever KE, Verbakel M, et al. Allopurinol to reduce cardiovascular morbidity and mortality: A systematic review and meta-analysis. PLoS One. 2021;16(12):e0260844. doi: https://doi.org/10.1371/journal.pone.0260844
61. Becker MA, Schumacher HR, MacDonald PA, et al. Clinical efficacy and safety of successful longterm urate lowering with febuxostat or allopurinol in subjects with gout. J Rheumatol. 2009;36(6):1273-1282. doi: https://doi.org/10.3899/jrheum.080814
62. Whelton A, MacDonald PA, Chefo S, Gunawardhana L. Preservation of renal function during gout treatment with febuxostat: a quantitative study. Postgrad Med. 2013;125(1):106-114. doi: https://doi.org/10.3810/pgm.2013.01.2626
63. Primatesta P, Plana E, Rothenbacher D. Gout treatment and comorbidities: a retrospective cohort study in a large US managed care population. BMC Musculoskelet Disord. 2011;12(1):103. doi: https://doi.org/10.1186/1471-2474-12-103
64. Chatterjee S, Ilaslan H. Painful knee locking caused by gouty tophi successfully treated with allopurinol. Nat Clin Pract Rheumatol. 2008;4(12):675-679. doi: https://doi.org/10.1038/ncprheum0945
65. Orriss IR, Arnett TR, George J, Witham MD. Allopurinol and oxypurinol promote osteoblast differentiation and increase bone formation. Exp Cell Res. 2016;342(2):166-174. doi: https://doi.org/10.1016/j.yexcr.2016.03.004
Supplementary files
|
1. Figure 1. Cellular model of gouty tophus (adapted from Dalbeth N. et al., 2010) [52]. Cells were identified by quantitative immunohistochemistry (MNC, mononuclear cells; TRAP, tartrate and acid phosphatase resistant cells). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(566KB)
|
Indexing metadata ▾ |
|
2. Figure 2. CT scan of the right knee of a patient with chronic tophi gout on admission (adapted from Chatterjee S. et al., 2008) [64]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(168KB)
|
Indexing metadata ▾ |
|
3. Figure 3. CT scan of the right knee of a patient with chronic tophi gout 3 years after presentation (adapted from Chatterjee S. et al., 2008) [64]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(191KB)
|
Indexing metadata ▾ |
Review
For citations:
Cheremushkina E.V., Eliseev M.S. Hyperuricemia and gout: effects on bone and articular cartilage (literature review). Obesity and metabolism. 2022;19(3):348-357. (In Russ.) https://doi.org/10.14341/omet12894

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).