Preview

Obesity and metabolism

Advanced search

The role of polymorphisms of PNPLA3, MBOAT7, and TM6SF2 in the development of non-alcoholic fatty liver disease in metabolic syndrome

https://doi.org/10.14341/omet12855

Abstract

Non-alcoholic fatty liver disease currently affects more than 30% of the population. Recent studies highlight the role of genetic polymorphisms in genes associated with fat catabolism and anabolism in the manifestation of this condition and its progression. The work analyzes foreign publications on the molecular and biochemical aspects of these polymorphisms, as well as works studying their effect on the state of the liver and markers of its pathology over the past 10 years. Thus, polymorphisms of the PNPLA3, MBOAT7, and TM6SF2, affecting the functionality of the proteins they express, lead to a change in the metabolism of fatty acids in the liver, which in turn leads to the development of NAFLD and its progression. Despite the fact that the contribution of the rs738409 polymorphism of the PNPLA3 gene is well described both in foreign and Russian articles, polymorphisms of the MBOAT7 and TM6SF2 genes and their effect on NAFLD, as well as the molecular biochemical mechanisms underlying it, have been studied much worse in foreign studies and are little mentioned in Russian ones. In addition, the issue of the severity of the influence of the above polymorphisms on populations of different ethnic and age groups requires additional research. This work attempts to systematize the available data on these issues.

About the Authors

O. V. Smirnova
Siberian Federal University

Olga V. Smirnova, MD, PhD, Professor

Researcher ID: C-2722-2018
Scopus Author ID: 56350970700
eLibrary SPIN: 2198-0265

Krasnoyarsk



D. V. Lagutinskaya
Siberian Federal University
Russian Federation

Darya V. Lagutinskaya

Scopus Author ID: 57208819963
eLibrary SPIN: 4745-2729

3g Partizana Zheleznyaka street, 660022 Krasnoyarsk



References

1. Marchesini G, Day CP, Dufour JF, et al. EASL–EASD–EASO Clinical Practice Guidelines for the management of nonalcoholic fatty liver disease. J Hepatol. 2016;64(6):1388-1402. doi: https://doi.org/10.1016/j.jhep.2015.11.004

2. Koroi PV, Slyadnev SA, Yagoda AV. Relationship of metabolic syndrome with adhesion molecules in non-alcoholic fatty liver disease. Medical News of North Caucasus. 2020;15(1):23-27. (In Russ.). doi: https://doi.org/10.14300/mnnc.2020

3. Setroame AM, Kormla Affrim P, Abaka-Yawson A, et al. Prevalence of Metabolic Syndrome and Nonalcoholic Fatty Liver Disease among Premenopausal and Postmenopausal Women in Ho Municipality: A Cross-Sectional Study. Biomed Res Int. 2020;2020(6):1-9. doi: https://doi.org/10.1155/2020/2168381

4. Costanzo A, Pacifico L, Chiesa C, et al. Genetic and metabolic predictors of hepatic fat content in a cohort of Italian children with obesity. Pediatr Res. 2019;85(5):671-677. doi: https://doi.org/10.1038/s41390-019-0303-1

5. Pirazzi C, Valenti L, Motta B, et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum Mol Genet. 2014;23(15):4077-4085. doi: https://doi.org/10.1093/hmg/ddu121

6. Kumari M, Schoiswohl G, Chitraju C, et al. Adiponutrin Functions as a Nutritionally Regulated Lysophosphatidic Acid Acyltransferase. Cell Metab. 2012;15(5):691-702. doi: https://doi.org/10.1016/j.cmet

7. Peregud DI, Baronets VY, Lobacheva AS, et al. PNPLA3 rs738409 associates with alcoholic liver cirrhosis but not with serum levels of IL6, IL10, IL8 or CCL2 in the Russian population. Ann Hepatol. 2021;20(6):100247. doi: https://doi.org/10.1016/j.aohep.2020.08.065

8. Xin Y-N, Zhao Y, Lin Z-H, et al. Molecular dynamics simulation of PNPLA3 I148M polymorphism reveals reduced substrate access to the catalytic cavity. Proteins Struct Funct Bioinforma. 2013;81(3):406-414. doi: https://doi.org/10.1002/prot.24199

9. Lindén D, Ahnmark A, Pingitore P, et al. Pnpla3 silencing with antisense oligonucleotides ameliorates nonalcoholic steatohepatitis and fibrosis in Pnpla3 I148M knock-in mice. Mol Metab. 2019;22(3):49-61. doi: https://doi.org/10.1016/j.molmet.2019.01.013

10. Xia M-F, Lin H-D, Chen L-Y, et al. The PNPLA3 rs738409 C>G variant interacts with changes in body weight over time to aggravate liver steatosis, but reduces the risk of incident type 2 diabetes. Diabetologia. 2019;62(4):644-654. doi: https://doi.org/10.1007/s00125-018-4805-x

11. Delik A, Akkiz H, Sadik D, et al. The effect of PNPLA3 polymorphism as gain in function mutation in the pathogenesis of non-alcoholic fatty liver disease. Indian J Gastroenterol. 2020;39(1):84-91. doi: https://doi.org/10.1007/s12664-020-01026-x

12. Vespasiani-Gentilucci U, Gallo P, Porcari A, et al. The PNPLA3 rs738409 C>G polymorphism is associated with the risk of progression to cirrhosis in NAFLD patients. Scand J Gastroenterol. 2016;51(8):967-973. doi: https://doi.org/10.3109/00365521.2016.1161066

13. Mazo DF, Malta FM, Stefano JT, et al. Validation of PNPLA3 polymorphisms as risk factor for NAFLD and liver fibrosis in an admixed population. Ann Hepatol. 2019;18(3):466-471. doi: https://doi.org/10.1016/j.aohep.2018.10.004

14. Grimaudo S, Pipitone RM, Pennisi G, et al. Association Between PNPLA3 rs738409 C>G Variant and LiverRelated Outcomes in Patients With Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol. 2020;18(4):935-944.e3. doi: https://doi.org/10.1016/j.cgh.2019.08.011

15. Wijarnpreecha K, Scribani M, Raymond P, et al. PNPLA3 gene polymorphism and overall and cardiovascular mortality in the United States. J Gastroenterol Hepatol. 2020;35(10):1789-1794. doi: https://doi.org/10.1111/jgh.15045

16. Sun D, Zheng K, Xu G, et al. PNPLA3 rs738409 is associated with renal glomerular and tubular injury in NAFLD patients with persistently normal ALT levels. Liver Int. 2020;40(1):107-119. doi: https://doi.org/10.1111/liv.14251

17. Wu J-T, Liu S-S, Xie X-J, et al. Independent and joint correlation of PNPLA3 I148M and TM6SF2 E167K variants with the risk of coronary heart disease in patients with nonalcoholic fatty liver disease. Lipids Health Dis. 2020;19(1):29. doi: https://doi.org/10.1186/s12944-020-01207-9

18. Trunecka P, Mikova I, Dlouha D, et al. Donor PNPLA3 rs738409 genotype is a risk factor for graft steatosis. A post-transplant biopsy-based study. Dig Liver Dis. 2018;50(5):490-495. doi: https://doi.org/10.1016/j.dld.2017.12.030

19. Liu Z, Chen T, Lu X, et al. PNPLA3 I148M variant affects non-alcoholic fatty liver disease in liver transplant recipients. World J Gastroenterol. 2015;21(34):10054-10056. doi: https://doi.org/10.3748/wjg.v21.i34.10054

20. Krawczyk M, Liebe R, Maier IB, et al. The Frequent Adiponutrin ( PNPLA3 ) Variant p.Ile148Met Is Associated with Early Liver Injury: Analysis of a German Pediatric Cohort. Gastroenterol Res Pract. 2015;2015(1):1-6. doi: https://doi.org/10.1155/2015/205079

21. Li Y, Liu S, Gao Y, et al. Association of TM6SF2 rs58542926 gene polymorphism with the risk of non-alcoholic fatty liver disease and colorectal adenoma in Chinese Han population. BMC Biochem. 2019;20(1):3. doi: https://doi.org/10.1186/s12858-019-0106-3

22. Sanchez-Pulido L, Ponting CP. TM6SF2 and MAC30, new enzyme homologs in sterol metabolism and common metabolic disease. Front Genet. 2014;5(1):3. doi: https://doi.org/10.3389/fgene.2014.00439

23. Kozlitina J, Smagris E, Stender S, et. al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2014;46(4):352-358. doi: https://doi.org/10.1038/ng.2901

24. Xu M, Li Y, Zhang S, et. al. Interaction of TM6SF2 E167K and PNPLA3 I148M variants in NAFLD in northeast China. Ann Hepatol. 2019;18(3):456-460. doi: https://doi.org/10.1016/j.aohep.2018.10.005

25. Lisboa Q, Nardelli M, Pereira P, et. al. PNPLA3 and TM6SF2 polymorphisms in Brazilian patients with nonalcoholic fatty liver disease. World J Hepatol. 2020;12(10):792-806. doi: https://doi.org/10.4254/wjh.v12.i10.792

26. Ehrhardt N, Doche M, Chen S et. al. Hepatic Tm6sf2 overexpression affects cellular ApoB-trafficking, plasma lipid levels, hepatic steatosis and atherosclerosis. Hum Mol Genet. 2017;26(14):2719-2731. doi: https://doi.org/10.1093/hmg/ddx159

27. Li B-T, Sun M, Li Y-F, et al. Disruption of the ERLIN–TM6SF2– APOB complex destabilizes APOB and contributes to nonalcoholic fatty liver disease. PLOS Genet. 2020;16(8):e1008955. doi: https://doi.org/10.1371/journal.pgen.1008955

28. Boren J, Adiels M, Bjornson E, et. al. Effects of TM6SF2 E167K on hepatic lipid and very low-density lipoprotein metabolism in humans. JCI Insight. 2020;5(24):e1444079. doi: https://doi.org/10.1172/jci.insight.144079

29. Ruhanen H, Nidhina Haridas PA, Eskelinen E-L, et. al. Depletion of TM6SF2 disturbs membrane lipid composition and dynamics in HuH7 hepatoma cells. Biochim Biophys Acta - Mol Cell Biol Lipids. 2017;1862(7):676-685. doi: https://doi.org/10.1016/j.bbalip.2017.04.004

30. Luukkonen P, Zhou Y, Nidhina Haridas P, et. al. Impaired hepatic lipid synthesis from polyunsaturated fatty acids in TM6SF2 E167K variant carriers with NAFLD. J Hepatol. 2017;67(1):128-136. doi: https://doi.org/10.1016/j.jhep

31. Grandone A, Cozzolino D, Marzulio P, et. al. TM6SF2 Glu167Lys polymorphism is associated with low levels of LDL‐cholesterol and increased liver injury in obese children. Pediatr Obes. 2016;11(2):115-119. doi: https://doi.org/10.1111/ijpo.12032

32. Musso G, Cipolla U, Maurizio C, et. al. TM6SF2 rs58542926 variant affects postprandial lipoprotein metabolism and glucose homeostasis in NAFLD. J Lipid Res. 2017;58(6):1221-1229. doi: https://doi.org/10.1194/jlr.M075028

33. Eslam M, Mangia A, Berg T, et. al. Diverse Impacts of the rs58542926 E167K Variant in TM6SF2 on Viral and Metabolic Liver Disease Phenotypes. Hepatology. 2016;64(1):34-46. doi: https://doi.org/10.1002/hep.28475

34. Zhou Y, Llaurado G, Oresic M, et. al. Circulating triacylglycerol signatures and insulin sensitivity in NAFLD associated with theE167K variant in TM6SF2. J Hepatol. 2015;62(3):657-663. doi: https://doi.org/10.1016/j.jhep.2014.10.010

35. Musso G, Cassader M, Gambino R, et. al. PNPLA3 rs738409 and TM6SF2 rs58542926 Gene Variants Affect Renal Disease and Function in Nonalcoholic Fatty Liver Disease. Hepatology. 2015;62(2):658-659. doi: https://doi.org/10.1002/hep.27643

36. Krawczyk M, Stachowska E, Milkiewicz P, et. al. Reduction of Caloric Intake Might Override the Prosteatotic Effects of the PNPLA3 p.I148M and TM6SF2 p.E167K Variants in Patients with Fatty Liver: Ultrasound-Based Prospective Study. Digestion. 2016;93(2):139-148. doi: https://doi.org/10.1159/000441185

37. Kalafati IP, Dimitriou M, Borsa D, et al. Fish intake interacts with TM6SF2 gene variant to affect NAFLD risk: results of a case–control study. Eur J Nutr. 2019;58(4):1463-1473. doi: https://doi.org/10.1007/s00394-018-1675-4

38. Caddeo A, Jamialahmadi O, Solinas G, et al. MBOAT7 is anchored to endomembranes by six transmembrane domains. J Struct Biol. 2019;206(3):349-360. doi: https://doi.org/10.1016/j.jsb.2019.04.006

39. Caddeo A, Hedfalk K, Romeo S, Pingitore P. LPIAT1/MBOAT7 contains a catalytic dyad transferring polyunsaturated fatty acids to lysophosphatidylinositol. Biochim Biophys Acta - Mol Cell Biol Lipids. 2021;1866(5):158891. doi: https://doi.org/10.1016/j.bbalip.2021.158891

40. Tanaka Y, Shimanaka Y, Caddeo A, et al. LPIAT1/MBOAT7 depletion increases triglyceride synthesis fueled by high phosphatidylinositol turnover. Gut. 2021;70(1):180-193. doi: https://doi.org/10.1136/gutjnl-2020-320646

41. Donati B, Dongiovanni P, Romeo S, et al. MBOAT7 rs641738 variant and hepatocellular carcinoma in non-cirrhotic individuals. Sci Rep. 2017;7(1):4492. doi: https://doi.org/10.1038/s41598-017-04991-0

42. Viitasalo A, Eloranta A-M, Atalay M, et. al. Association of MBOAT7 gene variant with plasma ALT levels in children: the PANIC study. Pediatr Res. 2016;80(5):651-655. doi: https://doi.org/10.1038/pr.2016.139

43. Zusi C, Morandi A, Maguolo A, et al. Association between MBOAT7 rs641738 polymorphism and non-alcoholic fatty liver in overweight or obese children. Nutr Metab Cardiovasc Dis. 2021;31(5):1548-1555. doi: https://doi.org/10.1016/j.numecd.2021.01.020

44. Umano G, Caprio S, Sessa A, et al. The rs626283 Variant in the MBOAT7 Gene is Associated with Insulin Resistance and Fatty Liver in Caucasian Obese Youth. Am J Gastroenterol. 2018;113(3):376-383. doi: https://doi.org/10.1038/ajg.2018.1

45. Chen L, Du S, Lu L, et. al. The additive effects of the TM6SF2 E167K and PNPLA3 I148M polymorphisms on lipid metabolism. Oncotarget. 2017;8(43):74209-74216. doi: https://doi.org/10.18632/oncotarget.18474

46. Krawczyk M, Rau M, Schattenberg J, et al. Combined effects of the PNPLA3 rs738409, TM6SF2 rs58542926, and MBOAT7 rs641738 variants on NAFLD severity: a multicenter biopsy-based study. J Lipid Res. 2017;58(1):247-255. doi: https://doi.org/10.1194/jlr.P067454

47. Basyte-Bacevice V, Skieceviciene J, Valantiene I, et al. TM6SF2 and MBOAT7 Gene Variants in Liver Fibrosis and Cirrhosis. Int J Mol Sci. 2019;20(6):1277. doi: https://doi.org/10.3390/ijms20061277


Supplementary files

Review

For citations:


Smirnova O.V., Lagutinskaya D.V. The role of polymorphisms of PNPLA3, MBOAT7, and TM6SF2 in the development of non-alcoholic fatty liver disease in metabolic syndrome. Obesity and metabolism. 2022;19(2):166-170. (In Russ.) https://doi.org/10.14341/omet12855

Views: 1652


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)