Preview

Obesity and metabolism

Advanced search

Endocrine disorders in the background of COVID-19 and postcovid syndrome

https://doi.org/10.14341/omet12853

Abstract

The SARS-CoV-2 virus that caused the 2019 new coronavirus infection (COVID-19) pandemic has posed an unprecedented challenge to the global health system and scientific community. As of this literature review, the infection has claimed more than 6 million lives, and more than 500 million people worldwide have already been infected with SARS-CoV-2. In addition to the basic, pulmonary manifestations of the disease, as well as the severe, life-threatening complications of acute COVID-19, the long-term changes that occur in the postcovid period also affect other systems: endocrine, cardiovascular, nervous, and musculoskeletal. In this literature review, using data from current scientific publications obtained by searching «covid-19 endocrine disorders», «postcovid endocrine disorders» and «postcovid syndrome endocrine disorders» in the MEDLINE (PubMed) database and «endocrine pathology and covid-19», «postcovid and endocrine pathology» and «postcovid syndrome and endocrine disorders» in the e-Library database, we focused on describing and discussing the complications and consequences that SARS-CoV-2 infection can have on the endocrine glands, including the adrenals, thyroid, pituitary, gonads and pancreas.

About the Authors

A. V. Klimchuk
S.I. Georgievsky Medical Academy of V.I. Vernadsky Crimean Federal University
Russian Federation

Anastasia V. Klimchuk, MD, PhD

eLibrary SPIN: 9731-0233

5/7 Lenin boulevard, 295051 Simferopol



V. A. Beloglazov
S.I. Georgievsky Medical Academy of V.I. Vernadsky Crimean Federal University
Russian Federation

Vladimir A. Beloglazov, MD, PhD, Professor

Scopus Author ID: 7007129056
eLibrary SPIN: 7455-2188

Simferopol



I. A. Yatskov
S.I. Georgievsky Medical Academy of V.I. Vernadsky Crimean Federal University
Russian Federation

Igor A. Yatskov, MD

Scopus Author ID: 57218873902
eLibrary SPIN: 2395-5710

Simferopol



Ya. V. Dvoryanchikov
S.I. Georgievsky Medical Academy of V.I. Vernadsky Crimean Federal University
Russian Federation

Yaroslav V. Dvoryanchikov

Simferopol



References

1. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-574. doi: https://doi.org/10.1016/S0140-6736(20)30251-8

2. Ji W, Wang W, Zhao X, et al. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J Med Virol. 2020;92(4):433-440. doi: https://doi.org/10.1002/jmv.25682

3. Puig-Domingo M, Marazuela M, Giustina A. COVID-19 and endocrine diseases. A statement from the European Society of Endocrinology. Endocrine. 2020;68(1):2-5. doi: https://doi.org/10.1007/s12020-020-02294-5

4. Li X, Zai J, Wang X, Li Y. Potential of large «first generation» humanto-human transmission of 2019-nCoV. J Med Virol. 2020;92(4):448-454. doi: https://doi.org/10.1002/jmv.25693

5. Pal R, Banerjee M. COVID-19 and the endocrine system: exploring the unexplored. J Endocrinol Invest. 2020;43(7):1027-1031. doi: https://doi.org/10.1007/s40618-020-01276-8

6. Leow MK, Kwek DS, Ng AW, et al. Hypocortisolism in survivors of severe acute respiratory syndrome (SARS). Clin Endocrinol (Oxf ). 2005;63(2):197-202. doi: https://doi.org/10.1111/j.1365-2265.2005.02325.x

7. Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv. 2020;6(31):2-5. doi: https://doi.org/10.1126/sciadv.abc5801

8. Pal R. COVID-19, hypothalamo-pituitary-adrenal axis and clinical implications. Endocrine. 2020;68(2):251-252. doi: https://doi.org/10.1007/s12020-020-02325-1

9. Fleseriu M, Buchfelder M, Cetas JS, et al. Pituitary society guidance: pituitary disease management and patient care recommendations during the COVID-19 pandemican international perspective. Pituitary. 2020;23(4):327-337. doi: https://doi.org/10.1007/s11102-020-01059-7

10. Wei L, Sun S, Zhang J, et al. Endocrine cells of the adenohypophysis in severe acute respiratory syndrome (SARS). Biochem Cell Biol. 2010;88(4):723-730. doi: https://doi.org/10.1139/O10-022

11. Wheatland R. Molecular mimicry of ACTH in SARS — implications for corticosteroid treatment and prophylaxis. Med Hypotheses. 2004;63(5):855-862. doi: https://doi.org/10.1016/j.mehy.2004.04.009

12. Martinez-Perez R, Kortz MW, Carroll BW, et al. Coronavirus Disease 2019 and Pituitary Apoplexy: A Single-Center Case Series and Review of the Literature. World Neurosurg. 2021;152:e678-687. doi: https://doi.org/10.1016/j.wneu.2021.06.004

13. Sheikh AB, Javed N, Sheikh AAE, et al. Diabetes Insipidus and Concomitant Myocarditis: A Late Sequelae of COVID-19 Infection. J Investig Med High Impact Case Rep. 2021 Jan-Dec;9:2324709621999954. doi: https://doi.org/10.1177/2324709621999954

14. Rajevac H, Bachan M, Khan Z. Diabetes insipidus as a symptom of COVID-19 infection: Case report. Chest. 2020;158(4):A2576. doi: https://doi.org/10.1016/j.chest.2020.09.172

15. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8. doi: https://doi.org/10.1016/j.cell.2020.02.052

16. Lazartigues E, Qadir MMF, Mauvais-Jarvis F. Endocrine Significance of SARS-CoV-2’s Reliance on ACE2. Endocrinology. 2020;161(9):A2576. doi: https://doi.org/10.1210/endocr/bqaa108

17. Puelles VG, Lütgehetmann M, Lindenmeyer MT, et al. Multiorgan and Renal Tropism of SARS-CoV-2. N Engl J Med. 2020;383(6):590-592. doi: https://doi.org/10.1056/NEJMc2011400

18. Wei L, Sun S, Xu CH, et al. Pathology of the thyroid in severe acute respiratory syndrome. Hum Pathol. 2007;38(1):95-102. doi: https://doi.org/10.1016/j.humpath.2006.06.011

19. Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091. doi: https://doi.org/10.1136/bmj.m1091

20. Muller I, Cannavaro D, Dazzi D, et al. SARS-CoV-2-related atypical thyroiditis. Lancet Diabetes Endocrinol. 2020;8(9):739-741. doi: https://doi.org/10.1016/S2213-8587(20)30266-7

21. Chen M, Zhou W, Xu W. Thyroid Function Analysis in 50 Patients with COVID-19: A Retrospective Study. Thyroid. 2021;31(1):8-11. doi: https://doi.org/10.1089/thy.2020.0363

22. Chen Y, Li X, Dai Y, Zhang J. The Association Between COVID-19 and Thyroxine Levels: A Meta-Analysis. Front Endocrinol (Lausanne). 2022;12:779692. doi: https://doi.org/10.3389/fendo.2021.779692

23. Lania A, Sandri MT, Cellini M, et al. Thyrotoxicosis in patients with COVID-19: the THYRCOV study. Eur J Endocrinol. 2020;183(4):381-387. doi: https://doi.org/10.1530/EJE-20-0335

24. Rotondi M, Coperchini F, Ricci G, et al. Detection of SARS-COV-2 receptor ACE-2 mRNA in thyroid cells: a clue for COVID-19-related subacute thyroiditis. J Endocrinol Invest. 2021;44(5):1085-1090. doi: https://doi.org/10.1007/s40618-020-01436-w

25. Brancatella A, Ricci D, Viola N, et al. Subacute Thyroiditis After Sars-COV-2 Infection. J Clin Endocrinol Metab. 2020;105(7):2367-2370. doi: https://doi.org/10.1210/clinem/dgaa276

26. Ruggeri RM, Campennì A, Siracusa M, et al. Subacute thyroiditis in a patient infected with SARS-COV-2: an endocrine complication linked to the COVID-19 pandemic. Hormones (Athens). 2021;20(1):219-221. doi: https://doi.org/10.1007/s42000-020-00230-w

27. Brancatella A, Ricci D, Cappellani D, et al. Is Subacute Thyroiditis an Underestimated Manifestation of SARS-CoV-2 Infection? Insights From a Case Series. J Clin Endocrinol Metab. 2020;105(10):e3742-e3746. doi: https://doi.org/10.1210/clinem/dgaa537

28. Mattar SAM, Koh SJQ, Rama Chandran S, Cherng BPZ. Subacute thyroiditis associated with COVID-19. BMJ Case Rep. 2020;13(8):e237336. doi: https://doi.org/10.1136/bcr-2020-237336

29. Murtas R, Andreano A, Gervasi F, et al. Association between autoimmune diseases and COVID-19 as assessed in both a test-negative case-control and population casecontrol design. Auto Immun Highlights. 2020;11(1):15. doi: https://doi.org/10.1186/s13317-020-00141-1

30. Scappaticcio L, Pitoia F, Esposito K, et al. Impact of COVID-19 on the thyroid gland: an update. Rev Endocr Metab Disord. 2021;22(4):803-815. doi: https://doi.org/10.1007/s11154-020-09615-z

31. Caron P. Thyroid disorders and SARS-CoV-2 infection: From pathophysiological mechanism to patient management. Ann Endocrinol (Paris). 2020;81(5):507-510. doi: https://doi.org/10.1016/j.ando.2020.09.001

32. Tee LY, Harjanto S, Rosario BH. COVID-19 complicated by Hashimoto’s thyroiditis. Singapore Med J. 2021;62(5):265. doi: https://doi.org/10.11622/smedj.2020106

33. Mateu-Salat M, Urgell E, Chico A. SARS-COV-2 as a trigger for autoimmune disease: report of two cases of Graves’ disease after COVID-19. J Endocrinol Invest. 2020;43(10):1527-1528. doi: https://doi.org/10.1007/s40618-020-01366-7

34. Hollstein T, Schulte DM, Schulz J, et al. Autoantibody-negative insulin-dependent diabetes mellitus after SARS-CoV-2 infection: a case report. Nat Metab. 2020;2(10):1021-1024. doi: https://doi.org/10.1038/s42255-020-00281-8

35. Wu CT, Lidsky PV, Xiao Y, et al. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. Cell Metab. 2021;33(8):1565-1576. e5. doi: https://doi.org/10.1016/j.cmet.2021.05.013

36. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-513. doi: https://doi.org/10.1016/S0140-6736(20)30211-7

37. Iacobellis G, Penaherrera CA, Bermudez LE, Bernal Mizrachi E. Admission hyperglycemia and radiological findings of SARS-CoV2 in patients with and without diabetes. Diabetes Res Clin Pract. 2020;164(8):108185. doi: https://doi.org/10.1016/j.diabres.2020.108185

38. Sardu C, D’Onofrio N, Balestrieri ML, et al. Outcomes in Patients With Hyperglycemia Affected by COVID-19: Can We Do More on Glycemic Control? Diabetes Care. 2020;43(7):1408-1415. doi: https://doi.org/10.2337/dc20-0723

39. Li H, Tian S, Chen T, et al. Newly diagnosed diabetes is associated with a higher risk of mortality than known diabetes in hospitalized patients with COVID-19. Diabetes Obes Metab. 2020;22(10):1897-1906. doi: https://doi.org/10.1111/dom.14099

40. Fadini GP, Morieri ML, Boscari F, et al. Newly-diagnosed diabetes and admission hyperglycemia predict COVID-19 severity by aggravating respiratory deterioration. Diabetes Res Clin Pract. 2020;168:108374. doi: https://doi.org/10.1016/j.diabres.2020.108374

41. Hayden MR. An Immediate and Long-Term Complication of COVID-19 May Be Type 2 Diabetes Mellitus: The Central Role of β-Cell Dysfunction, Apoptosis and Exploration of Possible Mechanisms. Cells. 2020;9(11):2475. doi: https://doi.org/10.3390/cells9112475

42. Basatemur E, Jones A, Peters M, Ramnarayan P. Paediatric critical care referrals of children with diabetic ketoacidosis during the COVID-19 pandemic. Arch Dis Child. 2021;106(4):e21. doi: https://doi.org/10.1136/archdischild-2020-320471

43. Freire Santana M, Borba MGS, Baía-da-Silva DC, et al. Case Report: Adrenal Pathology Findings in Severe COVID-19: An Autopsy Study. Am J Trop Med Hyg. 2020;103(4):1604-1607. doi: https://doi.org/10.4269/ajtmh.20-0787

44. Annane D, Pastores SM, Rochwerg B, et al. Guidelines for the diagnosis and management of critical illnessrelated corticosteroid insufficiency (CIRCI) in critically ill patients (Part I): Society of Critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017. Intensive Care Med. 2017;43(12):1751-1763. doi: https://doi.org/10.1007/s00134-017-4919-5

45. Bergthorsdottir R, Leonsson-Zachrisson M, Odén A, Johannsson G. Premature mortality in patients with Addison’s disease: a populationbased study. J Clin Endocrinol Metab. 2006;91(12):4849-4853. doi: https://doi.org/10.1210/jc.2006-0076.

46. Hanley B, Naresh KN, Roufosse C, et al. Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: a post-mortem study. Lancet Microbe. 2020;1(6):e245-e253. doi: https://doi.org/10.1016/S2666-5247(20)30115-4

47. Hashim M, Athar S, Gaba WH. New onset adrenal insufficiency in a patient with COVID-19. BMJ Case Rep. 2021;14(1):e237690. doi: https://doi.org/10.1136/bcr-2020-237690

48. Frankel M, Feldman I, Levine M, et al. Bilateral Adrenal Hemorrhage in Coronavirus Disease 2019 Patient: A Case Report. J Clin Endocrinol Metab. 2020;105(12):3745-3749. doi: https://doi.org/10.1210/clinem/dgaa487

49. Sharrack N, Baxter CT, Paddock M, Uchegbu E. Adrenal haemorrhage as a complication of COVID-19 infection. BMJ Case Rep. 2020;13(11):e239643. doi: https://doi.org/10.1136/bcr-2020-239643

50. Shen Q, Xiao X, Aierken A, et al. The ACE2 expression in Sertoli cells and germ cells may cause male reproductive disorder after SARS-CoV-2 infection. J Cell Mol Med. 2020;24(16):9472-9477. doi: https://doi.org/10.1111/jcmm.15541

51. Hui KPY, Cheung MC, Perera RAPM, et al. Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in-vitro cultures. Lancet Respir Med. 2020;8(7):687-695. doi: https://doi.org/10.1016/S2213-2600(20)30193-4

52. Pijls BG, Jolani S, Atherley A, et al. Demographic risk factors for COVID-19 infection, severity, ICU admission and death: a meta-analysis of 59 studies. BMJ Open. 2021;11(1):e044640. doi: https://doi.org/10.1136/bmjopen-2020-044640

53. Ma L, Xie W, Li D et al. Evaluation of sex-related hormones and semen characteristics in reproductive-aged male COVID-19 patients. J Med Virol. 2021;93(1):456-462. doi: https://doi.org/10.1002/jmv.26259

54. Xu J, Qi L, Chi X, et al. Orchitis: a complication of severe acute respiratory syndrome (SARS). Biol Reprod. 2006;74(2):410-416. doi: https://doi.org/10.1095/biolreprod.105.044776

55. Paoli D, Pallotti F, Colangelo S, et al. Study of SARS-CoV-2 in semen and urine samples of a volunteer with positive nasopharyngeal swab. J Endocrinol Invest. 2020;43(12):1819-1822. doi: https://doi.org/10.1007/s40618-020-01261-1

56. Pan F, Xiao X, Guo J, et al. No evidence of severe acute respiratory syndrome-coronavirus 2 in semen of males recovering from coronavirus disease 2019. Fertil Steril. 2020;113(6):1135-1139. doi: https://doi.org/10.1016/j.fertnstert.2020.04.024

57. Yang M, Chen S, Huang B et al. Pathological Findings in the Testes of COVID-19 Patients: Clinical Implications. Eur Urol Focus. 2020;6(5):1124-1129. doi: https://doi.org/10.1016/j.euf.2020.05.009

58. Li D, Jin M, Bao P, et al. Clinical Characteristics and Results of Semen Tests Among Men With Coronavirus Disease 2019. JAMA Netw Open. 2020;3(5):e208292. doi: https://doi.org/10.1001/jamanetworkopen.2020.8292

59. Guo L, Zhao S, Li W, et al. Absence of SARS-CoV-2 in semen of a COVID-19 patient cohort. Andrology. 2021;9(1):42-47. doi: https://doi.org/10.1111/andr.12848

60. Subramanian A, Anand A, Adderley NJ, et al. Increased COVID-19 infections in women with polycystic ovary syndrome: a population-based study. Eur J Endocrinol. 2021;184(5):637-645. doi: https://doi.org/10.1530/EJE-20-1163


Supplementary files

1. Figure 1. Development of cytokine storm in COVID-19.
Subject
Type Исследовательские инструменты
View (256KB)    
Indexing metadata ▾

Review

For citations:


Klimchuk A.V., Beloglazov V.A., Yatskov I.A., Dvoryanchikov Ya.V. Endocrine disorders in the background of COVID-19 and postcovid syndrome. Obesity and metabolism. 2022;19(2):206-212. (In Russ.) https://doi.org/10.14341/omet12853

Views: 9961


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)