Correction of endocrine complications of oncoimmunotherapy
https://doi.org/10.14341/omet12828
Abstract
Over the years, immunotherapy with immune checkpoint inhibitors (ICI) has become an effective treatment for malignant neoplasms. However, checkpoints play a crucial role in immunological tolerance and prevention of autoimmune diseases. Interfering with this mechanism can cause immune-related adverse events (IRAEs) that affect multiple organs in the body. Endocrinopathies are among the most common IRAES associated with ICI therapy. Given the unique nature of adverse events caused by the use of ICI drugs, a multidisciplinary team approach is required to effectively manage patients, minimize complications associated with drug toxicity, and fully realize the therapeutic potential of this treatment method. Taking into account the difficulty of detecting nonspecific symptoms, the importance of follow-up and timely intervention in case of toxicity detection, regular clinical and laboratory monitoring is necessary, as well as informing patients and doctors about the variants of endocrine adverse events and their treatment. While non-endocrine IRAES often require discontinuation of immunotherapy and are usually resolved by immunosuppressive therapy with high doses of glucocorticoids, endocrine IRAES usually do not need discontinuation of ICI treatment and rarely require immunosuppressive therapy, but seldomly regress and therefore demand a long-term treatment.
About the Authors
E. A. PigarovaRussian Federation
Ekaterina A. Pigarova - MD, PhD.
11 Dm. Ulyanova street, 117036 Moscow
Scopus Author ID: 55655098500; Researcher ID: T-9424-2018
Competing Interests:
None
A. S. Shutova
Russian Federation
Aleksandra S. Shutova - MD, postgraduate student.
Moscow
Competing Interests:
None
L. K. Dzeranova
Russian Federation
Larisa K. Dzeranova - MD, PhD.
Moscow
Competing Interests:
None
References
1. Pigarova EA, Dzeranova LK, Nuralieva NF, Mel'nichenko GA. Diagnosis and treatment of endocrinological complications of immunotherapy of oncological diseases. Obesity and metabolism. 2018;15(3):49-58. (In Russ.). doi: https://doi.org/10.14341/omet9834
2. Joshi MN, Whitelaw BC, Palomar MT, et al. Immune checkpoint inhibitor-related hypophysitis and endocrine dysfunction: clinical review. Clin Endocrinol (Oxf). 2016;85(3):331-339. doi: https://doi.org/10.1111/cen.13063
3. Barroso-Sousa R, Barry WT, Garrido-Castro AC, et al. Incidence of Endocrine Dysfunction Following the Use of Different Immune Checkpoint Inhibitor Regimens. JAMA Oncol. 2018;4(2):173. doi: https://doi.org/10.1001/jamaoncol.2017.3064
4. Spain L, Diem S, Larkin J. Management of toxicities of immune checkpoint inhibitors. Cancer Treat Rev. 2016;44:51-60. doi: https://doi.org/10.1016/j.ctrv.2016.02.001
5. Caturegli P, Newschaffer C, Olivi A, et al. Autoimmune hypophysitis. Endocr Rev. 2005;26(5):599-614. doi: https://doi.org/10.1210/er.2004-0011
6. Torino F, Barnabei A, De Vecchis L, et al. Hypophysitis induced by monoclonal antibodies to cytotoxic T lymphocyte antigen 4: Challenges from a new cause of a rare disease. Oncologist. 2012;17(4):525-535. doi: https://doi.org/10.1634/theoncologist.2011-0404
7. Almutairi AR, McBride A, Slack M, et al. Potential immune-related adverse events associated with monotherapy and combination therapy of ipilimumab, nivolumab, and pembrolizumab for advanced melanoma: A systematic review and meta-analysis. Front Oncol. 2020;(10):91. doi: https://doi.org/10.3389/fonc.2020.00091
8. Lu J, Li L, Lan Y, et al. Immune checkpoint inhibitor-associated pituitary-adrenal dysfunction: A systematic review and meta-analysis. Cancer Med. 2019;8(18):7503-7515. doi: https://doi.org/10.1002/cam4.2661
9. Xu H, Tan P, Zheng X, et al. Immune-related adverse events following administration of anti-cytotoxic T-lymphocyte-associated protein-4 drugs: a comprehensive systematic review and meta-analysis. Drug Des Devel Ther. 2019;13(18):2215-2234. doi: https://doi.org/10.2147/DDDT.S196316
10. de Filette J, Andreescu C, Cools F, et al. A systematic review and meta-analysis of endocrine-related adverse events associated with immune checkpoint inhibitors. Horm Metab Res. 2019;51(3):145-156. doi: https://doi.org/10.1055/a-0843-3366
11. Iwama S, De Remigis A, Callahan MK, et al. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med. 2014;6(230):145-156. doi: https://doi.org/10.1126/scitranslmed.3008002
12. Bertrand A, Kostine M, Barnetche T, et al. Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis. BMC Med. 2015;13(1):211. doi: https://doi.org/10.1186/s12916-015-0455-8
13. Faje A, Reynolds K, Zubiri L, et al. Hypophysitis secondary to nivolumab and pembrolizumab is a clinical entity distinct from ipilimumab-associated hypophysitis. Eur J Endocrinol. 2019;181(3):211-219. doi: https://doi.org/10.1530/EJE-19-0238
14. Corsello SM, Barnabei A, Marchetti P, et al. Endocrine Side Effects Induced by Immune Checkpoint Inhibitors. J Clin Endocrinol Metab. 2013;98(4):1361-1375. doi: https://doi.org/10.1210/jc.2012-4075
15. Albarel F, Castinetti F, Brue T. Management of endocrine disease: Immune check point inhibitors-induced hypophysitis. Eur J Endocrinol. 2019;181(3):R107-R118. doi: https://doi.org/10.1530/EJE-19-0169
16. Juszczak A, Gupta A, Karavitaki N, et al. Mechanisms in endocrinology: Ipilimumab: a novel immunomodulating therapy causing autoimmune hypophysitis: a case report and review. Eur J Endocrinol. 2012;167(1):1-5. doi: https://doi.org/10.1530/EJE-12-0167
17. Zhao C, Tella SH, Del Rivero J, et al. Anti-PD-L1 treatment induced central diabetes insipidus. J Clin Endocrinol Metab. 2018;103(2):365-369. doi: https://doi.org/10.1210/jc.2017-01905
18. Deligiorgi M V., Siasos G, Vergadis C, Trafalis DT. Central diabetes insipidus related to anti-programmed cell-death 1 protein active immunotherapy. Int Immunopharmacol. 2020;(83):106427. doi: https://doi.org/10.1016/j.intimp.2020.106427
19. Barnard ZR, Walcott BP, Kahle KT, et al. Hyponatremia associated with Ipilimumab-induced hypophysitis. Med Oncol. 2012;29(1):374-377. doi: https://doi.org/10.1007/s12032-010-9794-7
20. Lupu J, Pages C, Laly P, et al. Transient pituitary ACTH-dependent Cushing syndrome caused by an immune checkpoint inhibitor combination. Melanoma Res. 2017;27(6):649-652. doi: https://doi.org/10.1097/CMR.0000000000000405
21. Sekizaki T, Kameda H, Oba C, et al. Nivolumab-induced hypophysitis causing secondary adrenal insufficiency after transient ACTH elevation. Endocr J. 2019;66(10):937-941. doi: https://doi.org/10.1507/endocrj.EJ19-0076
22. Stelmachowska-Banas M, Czajka-Oraniec I. Management of endocrine immune-related adverse events of immune checkpoint inhibitors: an updated review. Endocr Connect. 2020;9(10):R207-R228. doi: https://doi.org/10.1530/EC-20-0342
23. Dedov II, Melnichenko GA, Dzeranova LK, et al. Pituitary incidentalomas: the clinical picture, diagnostics, differential diagnostics, and methods of treatment. Problems of Endocrinology. 2015;61(3):57-68. (In Russ.). doi: https://doi.org/10.14341/probl201561357-68
24. Lupi I, Brancatella A, Cosottini M, et al. Clinical heterogeneity of hypophysitis secondary to PD-1/PD-L1 blockade: insights from four cases. Endocrinol Diabetes Metab Case Reports. 2019;2019(3):57-68. doi: https://doi.org/10.1530/EDM-19-0102
25. Gonzaiez-Rodrfguez E, Rodrfguez-Abreu D. Immune checkpoint inhibitors: review and management of endocrine adverse events. Oncologist. 2016;21(7):804-816. doi: https://doi.org/10.1634/theoncologist.2015-0509
26. Pigarova EA, Dzeranova LK, Zhukov AYu, Dedov II. National survey of doctors on hypo-and hypernatremia in the context of real clinical practice. Obesity and metabolism. 2019;16(2):60-68. (In Russ.). doi: https://doi.org/10.14341/omet10249
27. Higham CE, Olsson-Brown A, Carroll P, et al. Society for endocrinology endocrine emergency guidance: Acute management of the endocrine complications of checkpoint inhibitor therapy. Endocr Connect. 2018;7(7):G1-G7. doi: https://doi.org/10.1530/EC-18-0068
28. Ricciuti B, Genova C, De Giglio A, et al. Impact of immune-related adverse events on survival in patients with advanced non-small cell lung cancer treated with nivolumab: long-term outcomes from a multi-institutional analysis. J Cancer Res Clin Oncol. 2019;145(2):479-485. doi: https://doi.org/10.1007/s00432-018-2805-3
29. Faje AT, Lawrence D, Flaherty K, et al. High-dose glucocorticoids for the treatment of ipilimumab-induced hypophysitis is associated with reduced survival in patients with melanoma. Cancer. 2018;124(18):3706-3714. doi: https://doi.org/10.1002/cncr.31629
30. Morganstein DL, Lai Z, Spain L, et al. Thyroid abnormalities following the use of cytotoxic T-lymphocyte antigen-4 and programmed death receptor protein-1 inhibitors in the treatment of melanoma. Clin Endocrinol (Oxf). 2017;86(4):614-620. doi: https://doi.org/10.1111/cen.13297
31. Sznol M, Postow MA, Davies MJ, et al. Endocrine-related adverse events associated with immune checkpoint blockade and expert insights on their management. Cancer Treat Rev. 2017;(58):70-76. doi: https://doi.org/10.1016/j.ctrv.2017.06.002
32. Delivanis DA, Gustafson MP, Bornschlegl S, et al. Pembrolizumab-induced thyroiditis: comprehensive clinical review and insights into underlying involved mechanisms. J Clin Endocrinol Metab. 2017;102(8):2770-2780. doi: https://doi.org/10.1210/jc.2017-00448
33. Yamauchi I, Yasoda A, Matsumoto S, et al. Incidence, features, and prognosis of immune-related adverse events involving the thyroid gland induced by nivolumab. PLoS One. 2019;14(5):e0216954. doi: https://doi.org/10.1371/journal.pone.0216954
34. Mazarico I, Capel I, Gimenez-Palop O, et al. Low frequency of positive antithyroid antibodies is observed in patients with thyroid dysfunction related to immune check point inhibitors. J Endocrinol Invest. 2019;42(12):1443-1450. doi: https://doi.org/10.1007/s40618-019-01058-x
35. Ryder M, Callahan M, Postow MA, et al. Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: a comprehensive retrospective review from a single institution. Endocr Relat Cancer. 2014;21(2):371-381. doi: https://doi.org/10.1530/ERC-13-0499
36. de Filette J, Jansen Y, Schreuer M, et al. Incidence of Thyroid-Related Adverse Events in Melanoma Patients Treated With Pembrolizumab. J Clin Endocrinol Metab. 2016;101(11):4431-4439. doi: https://doi.org/10.1210/jc.2016-2300
37. Lee H, Hodi FS, Giobbie-Hurder A, et al. Characterization of Thyroid Disorders in Patients Receiving Immune Checkpoint Inhibition Therapy. Cancer Immunol Res. 2017;5(12):1133-1140. doi: https://doi.org/10.1158/2326-6066.CIR-17-0208
38. McMillen B, Dhillon MS, Yong-Yow S. A rare case of thyroid storm. BMJ Case Rep. 2016;5(12):bcr2016214603. doi: https://doi.org/10.1136/bcr-2016-214603
39. Martin-Liberal J, Furness AJ, Joshi K, et al. Anti-programmed cell death-1 therapy and insulin-dependent diabetes: a case report. Cancer Immunol Immunother. 2015;64(6):765-767. doi: https://doi.org/10.1007/s00262-015-1689-1
40. Yamazaki N, Kiyohara Y, Uhara H, et al. Phase II study of ipilimumab monotherapy in Japanese patients with advanced melanoma. Cancer Chemother Pharmacol. 2015;76(5):997-1004. doi: https://doi.org/10.1007/s00280-015-2873-x
41. Ansari MJI, Salama AD, Chitnis T, et al. The Programmed Death-1 (PD-1) pathway regulates autoimmune diabetes in Nonobese Diabetic (NOD) Mice. J Exp Med. 2003;198(1):63-69. doi: https://doi.org/10.1084/jem.20022125
42. Liang SC, Latchman YE, Buhlmann JE, et al. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol. 2003;33(10):2706-2716. doi: https://doi.org/10.1002/eji.200324228
43. Kavvoura FK, Ioannidis JPA. CTLA-4 gene polymorphisms and susceptibility to type 1 diabetes mellitus: A HuGE review and meta-analysis. Am J Epidemiol. 2005;162(1):3-16. doi: https://doi.org/10.1093/aje/kwi165
44. Tsutsumi Y, Jie X, Ihara K, et al. Phenotypic and genetic analyses of T-cell-mediated immunoregulation in patients with Type 1 diabetes. Diabet Med. 2006;23(10):1145-1150. doi: https://doi.org/10.1111/j.1464-5491.2006.01951.x
45. Spence A, Tang Q. Restoring regulatory T Cells in type 1 diabetes. Curr Diab Rep. 2016;16(11):110. doi: https://doi.org/10.1007/s11892-016-0807-6
46. Steck AK, Rewers MJ. Genetics of type 1 diabetes. Clin Chem. 2011;57(2):176-185. doi: https://doi.org/10.1373/clinchem.2010.148221
47. Okamoto M, Okamoto M, Gotoh K, et al. Fulminant type 1 diabetes mellitus with anti-programmed cell death-1 therapy. J Diabetes Investig. 2016;7(6):915-918. doi: https://doi.org/10.1111/jdi.12531
48. Kotwal A, Haddox C, Block M, Kudva YC. Immune checkpoint inhibitors: an emerging cause of insulin-dependent diabetes. BMJ Open Diabetes Res Care. 2019;7(1):e000591. doi: https://doi.org/10.1136/bmjdrc-2018-000591
49. Imagawa A, Hanafusa T, Awata T, et al. Report of the committee of the Japan diabetes society on the research of fulminant and acute-onset type 1 diabetes mellitus: New diagnostic criteria of fulminant type 1 diabetes mellitus (2012). J Diabetes Investig. 2012;3(6):536-539. doi: https://doi.org/10.1111/jdi.12024
50. Evans K. Diabetic ketoacidosis: update on management. Clin Med (Northfield Il). 2019;19(5):396-398. doi: https://doi.org/10.7861/clinmed.2019-0284
51. Chang L-S, Barroso-Sousa R, Tolaney SM, et al. Endocrine Toxicity of Cancer Immunotherapy Targeting Immune Checkpoints. Endocr Rev. 2019;40(1):17-65. doi: https://doi.org/10.1210/er.2018-00006
52. Harsch IA. Hypothesis: does adrenalitis caused by immune checkpoint-inhibitors put melanoma patients at an elevated risk for recurrence? J Immunother Cancer. 2019;7(1):166. doi: https://doi.org/10.1186/s40425-019-0651-8
53. Win MA, Thein KZ, Qdaisat A, Yeung S-CJ. Acute symptomatic hypocalcemia from immune checkpoint therapy-induced hypoparathyroidism. Am J Emerg Med. 2017;35(7):1039.e5-1039.e7. doi: https://doi.org/10.1016/j.ajem.2017.02.048
54. Trinh B, Sanchez GO, Herzig P, Laubli H. Inflammation-induced hypoparathyroidism triggered by combination immune checkpoint blockade for melanoma. J Immunother Cancer. 2019;7(1):52. doi: https://doi.org/10.1186/s40425-019-0528-x
55. Piranavan P, Li Y, Brown E, et al. Immune Checkpoint Inhibitor-Induced Hypoparathyroidism Associated With Calcium-Sensing Receptor-Activating Autoantibodies. J Clin Endocrinol Metab. 2019;104(2):550-556. doi: https://doi.org/10.1210/jc.2018-01151
Supplementary files
|
1. Picture 1. The frequency of autoimmune-mediated adverse events associated with the use of immune checkpoint inhibitors. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(185KB)
|
Indexing metadata ▾ |
|
2. Picture 2. The algorithm of screening, diagnosis and treatment of endocrine pathology during immune checkpoint inhibitors therapy. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(727KB)
|
Indexing metadata ▾ |
Review
For citations:
Pigarova E.A., Shutova A.S., Dzeranova L.K. Correction of endocrine complications of oncoimmunotherapy. Obesity and metabolism. 2022;19(4):418-430. (In Russ.) https://doi.org/10.14341/omet12828

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).