Metabolic endotoxemia: possible causes and consequences
https://doi.org/10.14341/omet12750
Abstract
This review article presents data from the literature, which provide an idea of the relationship between metabolic disorders occurring against the background of obesity and endotoxinemia, as well as the effect of these conditions on the maintenance of low-grade inflammation in the body. A description of the hormonal and immune restructuring of white adipose tissue, the main routes of entry and metabolism of endotoxin is given. Particular attention is paid to the mechanisms of the mutual influence of obesity and endotoxinemia. Described by Yakovlev M.Yu. in 1988 «endotoxin aggression» and Cani P.D. et al. in 2007, «metabolic endotoxinemia», in our opinion, is one of the most important triggers for the development and progression of a whole spectrum of acute and chronic diseases. Based on the data of recent years, adipose tissue is an active endocrine organ capable of influencing both metabolic processes and the state of innate and acquired immune defense mechanisms. It has now been proven that high-calorie diets lead not only to an increase in overweight, but also to an increase in the level of endotoxin circulating in the blood. An in-depth study of the ability of obesity and endotoxinemia to potentiate the mutual pro-inflammatory effect can help both in understanding the pathogenesis of the main cardiovascular, autoimmune, allergic and infectious (including viral) diseases, and in the development of methods for non-pharmacological and drug correction of these conditions.
About the Authors
V. A. BeloglazovRussian Federation
Vladimir A. Beloglazov, MD, PhD, Professor
Simferopol
I. A. Yatskov
Russian Federation
Igor A. Yatskov, MD; Scopus Author ID: 57218873902; eLibrary SPIN: 2395-5710
Simferopol
E. D. Kumelsky
Russian Federation
Evgeny D. Kumelsky, postgraduate student
Simferopol
V. V. Polovinkina
Russian Federation
Valeria V. Polovinkina, student
Simferopol
References
1. Flegal KM, Kruszon-Moran D, Carroll MD, et al. Trends in Obesity Among Adults in the United States, 2005 to 2014. JAMA. 2016;315(21):2284-2291. doi: https://doi.org/10.1001/jama.2016.6458
2. Afshin A, Forouzanfar MH, Reitsma MB, et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med. 2017;377(1):13-27. doi: https://doi.org/10.1056/NEJMoa1614362
3. Arner P. Differences in lipolysis between human subcutaneous and omental adipose tissues. Ann Med. 1995;27(4):435-438. doi: https://doi.org/10.3109/07853899709002451
4. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415-445. doi: https://doi.org/10.1146/annurev-immunol-031210-101322
5. Dandona P, Aljada A, Bandyopadhyay A. Inflammation: The link between insulin resistance, obesity and diabetes. Trends in Immunology. 2004;25:4-7. doi: https://doi.org/10.1016/j.it.2003.10.013
6. Van Gaal LF, Mertens IL, Christophe E. Mechanisms linking obesity with cardiovascular disease. Nature. 2006; 444:875-880. doi: https://doi.org/10.1038/nature05487
7. Pussinen PJ, Havulinna AS, Lehto M, et al. Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care. 2011;34:392-397. doi: https://doi.org/10.2337/dc10-1676
8. Agwunobi AO, Reid C, Maycock P, et al. Insulin resistance and substrate utilization in human endotoxemia. The Journal of Clinical Endocrinology and Metabolism. 2000;85:3770-3778. doi: https://doi.org/10.1210/jcem.85.10.6914
9. Krogh-Madsen R, Plomgaard P, Akerstrom T, et al. Effect of short-term intralipid infusion on the immuneresponse during low-dose endotoxemia in humans. The Journal of Clinical Endocrinology and Metabolism. 2008;294:371-379. doi: https://doi.org/10.1152/ajpendo.00507.2007
10. Yakovlev MYu. Sistemnaya endotoksinemiya. Gomeostaz I obshchaya patologiya. Moscow: Nauka; 2021. (In Russ.).
11. Mongraw‐Chaffin M, Hairston KG, Hanley AJG, et al. Association of Visceral Adipose Tissue and Insulin Resistance with Incident Metabolic Syndrome Independent of Obesity Status: The IRAS Family Study. Obesity. 2021;29(7):1195-1202. doi: https://doi.org/10.1002/oby.23177
12. Kissebah AH, Vydelingum N, Murray R, et al. Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab. 1982;54(2):254-260. doi: https://doi.org/10.1210/jcem-54-2-254
13. Lemieux I, Després J-P. Metabolic Syndrome: Past, Present and Future. Nutrients. 2020;12(11):3501. doi: https://doi.org/10.3390/nu12113501
14. Gastaldelli A, Miyazaki Y, Pettiti M, et al. Metabolic effects of visceral fat accumulation in type 2 diabetes. J Clin Endocrinol Metab. 2002;87(11):5098-5103. doi: https://doi.org/10.1210/jc.2002-020696
15. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85-97. doi: https://doi.org/10.1038/nri2921
16. Kunz HE, Hart CR, Gries KJ, et al. Adipose tissue macrophage populations and inflammation are associated with systemic inflammation and insulin resistance in obesity. Am J Physiol Metab. 2021;321(1):E105-E121. doi: https://doi.org/10.1152/ajpendo.00070.2021
17. Nawaz A, Aminuddin A, Kado T, et al. CD206+ M2-like macrophages regulate systemic glucose metabolism by inhibiting proliferation of adipocyte progenitors. Nat Commun. 2017;8(1):286. doi: https://doi.org/10.1038/s41467-017-00231-1
18. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175-184. doi: https://doi.org/10.1172/JCI29881
19. Nara N, Nakayama Y, Okamoto S, et al. Disruption of CXC motif chemokine ligand-14 in mice ameliorates obesity-induced insulin resistance. J Biol Chem. 2007;282(42):30794-30803. doi: https://doi.org/10.1074/jbc.M700412200
20. Kochumon S, Al Madhoun A, Al-Rashed F, et al. Elevated adipose tissue associated IL-2 expression in obesity correlates with metabolic inflammation and insulin resistance. Sci Rep. 2020;10(1):16364. doi: https://doi.org/10.1038/s41598-020-73347-y
21. Duffaut C, Zakaroff-Girard A, Bourlier V, et al. Interplay between human adipocytes and T lymphocytes in obesity: CCL20 as an adipochemokine and T lymphocytes as lipogenic modulators. Arterioscler Thromb Vasc Biol. 2009;29(10):1608-1614. doi: https://doi.org/10.1161/ATVBAHA.109.192583
22. Ramkhelawon B, Hennessy EJ, Ménager M, et al. Netrin-1 promotes adipose tissue macrophage retention and insulin resistance in obesity. Nat Med. 2014;20(4):377-384. doi: https://doi.org/10.1038/nm.3467
23. Kratz M, Coats BR, Hisert KB, et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab. 2014;20(4):614-625. doi: https://doi.org/10.1016/j.cmet.2014.08.010
24. Bertola A, Ciucci T, Rousseau D, et al. Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes. 2012;61(9):2238-2247. doi: https://doi.org/10.2337/db11-1274
25. Stefanovic-Racic M, Yang X, Turner MS, et al. Dendritic cells promote macrophage infiltration and comprise a substantial proportion of obesity-associated increases in CD11c+ cells in adipose tissue and liver. Diabetes. 2012;61(9):2330-2339. doi: https://doi.org/10.2337/db11-1523
26. Liu J, Divoux A, Sun J, et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med. 2009;15(8):940-945. doi: https://doi.org/10.1038/nm.1994
27. Nishimura S, Manabe I, Nagasaki M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009;15(8):914-920. doi: https://doi.org/10.1038/nm.1964
28. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87-91. doi: https://doi.org/10.1126/science.7678183
29. Manzel A, Muller DN, Hafler DA, et al. Role of «Western diet» in inflammatory autoimmune diseases. Curr Allergy Asthma Rep. 2014;14(1):404. doi: https://doi.org/10.1007/s11882-013-0404-6
30. Paik J, Fierce Y, Treuting PM, et al. High-fat diet-induced obesity exacerbates inflammatory bowel disease in genetically susceptible Mdr1a-/- male mice. J Nutr. 2013;143(8):1240-1247. doi: https://doi.org/10.3945/jn.113.174615
31. Chehimi M, Vidal H, Eljaafari A. Pathogenic Role of IL-17-Producing Immune Cells in Obesity, and Related Inflammatory Diseases. J Clin Med. 2017;6(7):68. doi: https://doi.org/10.3390/jcm6070068
32. Winer S, Paltser G, Chan Y, et al. Obesity predisposes to Th17 bias. Eur J Immunol. 2009;39(9):2629-2635. doi: https://doi.org/10.1002/eji.200838893
33. Timmermans S, Bogie JF, Vanmierlo T, et al. High fat diet exacerbates neuroinflammation in an animal model of multiple sclerosis by activation of the Renin Angiotensin system. J Neuroimmune Pharmacol. 2014;9(2):209-217. doi: https://doi.org/10.1007/s11481-013-9502-4
34. Hanna Kazazian N, Wang Y, Roussel-Queval A, et al. Lupus Autoimmunity and Metabolic Parameters Are Exacerbated Upon High Fat Diet-Induced Obesity Due to TLR7 Signaling. Front Immunol. 2019;10:2015. doi: https://doi.org/10.3389/fimmu.2019.02015
35. Adamik B, Smiechowicz J, Kübler A. The importance of early detection of endotoxemia. Innate Immunity. 2016;22(7):503-509. doi: https://doi.org/10.1177/1753425916660177
36. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annual Review of Biochemistry. 2002;71:635-700. doi: https://doi.org/10.1146/annurev.biochem.71.110601.135414
37. Gordienko AI, Beloglazov VA, Kubyshkin AV, et al. Humoral Anti-Endotoxin Immunity Imbalance as a Probable Factor in the Pathogenesis of Autoimmune Diseases. Hum Physiol. 2019;45:337-341. doi: https://doi.org/10.1134/S036211971903006X
38. Di Lorenzo F, Kubik Ł, Oblak A, et al. Activation of Human Toll-like Receptor 4 (TLR4) Myeloid Differentiation Factor 2 (MD-2) by Hypoacylated Lipopolysaccharide from a Clinical Isolate of Burkholderiacenocepacia. Journal of Biological Chemistry. 2015;290(35):21305-21319. doi: https://doi.org/10.1074/jbc.m115.649087
39. Molinaro A, Holst O, Di Lorenzo F, et al. Chemistry of Lipid A: At the Heart of Innate Immunity. Chem - A Eur J. 2015;21(2):500-519. doi: https://doi.org/10.1002/chem.201403923
40. Munford RS. Sensing Gram-Negative Bacterial Lipopolysaccharides: a Human Disease Determinant? Infection and Immunity. 2008;76:454-465. doi: https://doi.org/10.1128/iai.00939-07
41. Di Lorenzo F, Palmigiano A, Al Bitar-Nehme S, et al. The Lipid A from Rhodopseudomonaspalustris Strain BisA53 LPS Possesses a Unique Structure and Low Immunostimulant Properties. Chemistry. 2017;23(15):3637-3647. doi: https://doi.org/10.1002/chem.201604379
42. Park BS, Song DH, Kim HM, et al. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature. 2009;458:1191-1195. doi: https://doi.org/10.1038/nature07830
43. Lembo-Fazio L, Billod JM, Di Lorenzo F, et al. Bradyrhizobium Lipid A: Immunological Properties and Molecular Basis of Its Binding to the Myeloid Differentiation Protein-2/Toll-Like Receptor 4 Complex. Frontiers in Immunology. 2018;9:1888. doi: https://doi.org/10.3389/fimmu.2018.01888
44. Pallach M, Di Lorenzo F, Facchini FA, et al. Structure and inflammatory activity of the LPS isolated from Acetobacterpasteurianus CIP103108. International Journal of Biological Macromolecules. 2018;119:1027-1035. doi: https://doi.org/10.1016/j.ijbiomac.2018.08.035
45. Moreira AP, Texeira TF, Ferreira AB, et al. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br J Nutr. 2012;108(5):801-809. doi: https://doi.org/10.1017/S0007114512001213
46. Pokusaeva DP, Anikhovskaya IA, Korobkova LA, et al. Prognostic significance of indicators of systemic endotoxinemia in atherogenesis. Fiziol Cheloveka. 2019;45(5):543-551. (In Russ.). doi: https://doi.org/10.1134/S0131164619050138
47. Yakovlev MY. The role of intestinal microflora and insufficiency of the liver barrier function in the development of endotoxinemia and inflammation. Kazan Medical Journal. 1988;69(5):353-358. (In Russ.).
48. d’Hennezel E, Abubucker S, Murphy LO, Cullen TW. Total Lipopolysaccharide from the Human Gut Microbiome Silences Toll-Like Receptor Signaling. mSystems. 2017;2(6). doi: https://doi.org/10.1128/mSystems.00046-17
49. Popkin BM, Du S, Green WD, et al. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes Rev. 2020;21(11):e13128. doi: https://doi.org/10.1111/obr.13128
50. Nagpal R, Newman TM, Wang S, et al. Obesity-Linked Gut Microbiome Dysbiosis Associated with Derangements in Gut Permeability and Intestinal Cellular Homeostasis Independent of Diet. J Diabetes Res. 2018;2018:1-9. doi: https://doi.org/10.1155/2018/3462092
51. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761-1772. doi: https://doi.org/10.2337/db06-1491
52. Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 2021;78(4):1233-1261. doi: https://doi.org/10.1007/s00018-020-03656-y
53. Karpova T, de Oliveira AA, Naas H, et al. Blockade of Toll-like receptor 4 (TLR4) reduces oxidative stress and restores phospho-ERK1/2 levels in Leydig cells exposed to high glucose. Life Sciences. 2020;245:117365. doi: https://doi.org/10.1016/j.lfs.2020.117365
54. Li Y, Deng S-L, Lian Z-X, Yu K. Roles of Toll-Like Receptors in Nitroxidative Stress in Mammals. Cells. 2019; 8(6):576. doi: https://doi.org/10.3390/cells8060576
55. Frost RA, Nystrom GJ, Lang CH. Lipopolysaccharide regulates proinflammatory cytokine expression in mouse myoblasts and skeletal muscle. Am J Physiol Integr Comp Physiol. 2002;283(3):R698-R709. doi: https://doi.org/10.1152/ajpregu.00039.2002
56. Kong X, Yang Y, Ren L, et al. Activation of autophagy attenuates EtOH-LPS-induced hepatic steatosis and injury through MD2 associated TLR4 signaling. Sci Rep. 2017;7(1):9292. doi: https://doi.org/10.1038/s41598-017-09045-z
57. Song MJ, Kim KH, Yoon JM, Kim JB. Activation of toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochemical and Biophysical Research Communications. 2006;346:739-745. doi: https://doi.org/10.1016/j.bbrc.2006.05.170
58. Okorokov PL, Anychovskaya IA, Yakovleva MM, et al. Nutritional factors of inflammation induction or lipid mechanism of endotoxin transport. Hum Physiol. 2012;38(6):649-655. doi: https://doi.org/10.1134/S0362119712060102
59. 59. Harte AL, Varma MC, Tripathi G, et al. High fat intake leads to acute postprandial exposure to circulating endotoxin in type 2 diabetic subjects. Diabetes Care. 2012;35:375-382. doi: https://doi.org/10.2337/dc11-1593
60. Lassenius MI, Pietilainen KH, Kaartinen K, et al. Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care. 2011;34:1809-1815. doi: https://doi.org/10.2337/dc10-2197
61. Monte SV, Caruana JA, Ghanim H, et al. Reduction in endotoxemia, oxidative and inflammatory stress, and insulin resistance after Roux-en-Y gastric bypass surgery in patients with morbid obesity and type 2 diabetes mellitus. Surgery. 2012;151:587-593. doi: https://doi.org/10.1016/j.surg.2011.09.038
62. Cox AJ, Zhang P, Bowden DW, et al. Increased intestinal permeability as a risk factor for type 2 diabetes. Diabetes and Metabolism. 2017;43:163-166. doi: https://doi.org/10.1016/j.diabet.2016.09.004
63. Harte AL, da Silva NF, Creely SJ, et al. Elevated endotoxin levels in non-alcoholic fatty liver disease. Journal of Inflammation (London England). 2010;7:15. doi: https://doi.org/10.1186/1476-9255-7-15
64. Kallio KAE, Hätönen KA, Lehto M, et al. Endotoxemia, nutrition, and cardiometabolic disorders. Acta Diabetol. 2015;52(2):395-404. doi: https://doi.org/10.1007/s00592-014-0662-3
65. Usachenko JV, Beloglazov VA, Gordienko AI. Systemic inflammation, the level of lipopolysaccharide-binding protein and soluble sСD14 receptors in the comorbidity of seasonal allergic rhinitis, essential arterial hypertension and obesity. Patogenez. 2020;18(3):61-67. (In Russ.). doi: https://doi.org/10.25557/2310-0435.2020.03.61-67
66. Liu X, Lu L, Yao P, et al. Lipopolysaccharide binding protein, obesity status and incidence of metabolic syndrome: A prospective study among middleaged and older chinese. Diabetologia. 2014;57:1834-1841. doi: https://doi.org/10.1007/s00125-014-3288-7
Supplementary files
|
1. Figure 1. Changes in the balance of pro- and anti-inflammatory adipokines and cytokines in obesity. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(135KB)
|
Indexing metadata ▾ |
|
2. Figure 2. The main routes of LPS metabolism. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(298KB)
|
Indexing metadata ▾ |
Review
For citations:
Beloglazov V.A., Yatskov I.A., Kumelsky E.D., Polovinkina V.V. Metabolic endotoxemia: possible causes and consequences. Obesity and metabolism. 2021;18(3):320-326. (In Russ.) https://doi.org/10.14341/omet12750

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).