Obesity is the basis of metabolic syndrome
https://doi.org/10.14341/omet12707
Abstract
Metabolic syndrome is a symptom complex that is based on visceral obesity and insulin resistance. Its prevalence is quite high, which is a big problem, since this condition increases the risk of developing cardiovascular diseases and mortality from them. Metabolic syndrome includes, in addition to abdominal obesity, arterial hypertension, disorders of carbohydrate, lipid and purine metabolism. Visceral adipose tissue plays a key role in the formation of insulin resistance and other components of the metabolic syndrome. This is due to the fact that abdominal fat, in contrast to subcutaneous fat, synthesizes pro-inflammatory cytokines, as well as adipokines — adipose tissue hormones that are involved in the formation of insulin resistance, affect carbohydrate and fat metabolism and the cardiovascular system. These include leptin, adiponectin, resistin, apelin and others. Some adipokines have an adverse effect on metabolism and increase cardiovascular risks, while others, on the contrary, have a positive effect. Taking into account their role in the development of the components of the metabolic syndrome, the possibilities of a therapeutic effect on the hormones of adipose tissue to improve metabolic processes and prevent complications associated with it are discussed.
About the Authors
A. F. VerbovoyRussian Federation
Andrey F. Verbovoy, MD, PhD, Professor; eLibrary SPIN: 2923-6745.
89 Chapaevskaya street, 443099 Samara
Competing Interests:
not
N. I. Verbovaya
Russian Federation
Nelly I. Verbovaya, MD, PhD, Professor; eLibrary SPIN: 9321-3659
Samara
Competing Interests:
not
Yu. A. Dolgikh
Russian Federation
Yuliya A. Dolgikh, MD, PhD; eLibrary SPIN: 3266-3933.
Samara
Competing Interests:
not
References
1. Oganov RG, Simanenkov VI, Bakulin IG, et al. Comorbid pathology in clinical practice. Diagnostic and treatment algorithms. Cardiovascular Therapy and Prevention. 2019;18(1):5-66. (In Russ.). https://doi.org/10.15829/1728-8800-2019-1-5-66.
2. Hanefeld M, Leonhardt W. Das metabolische Syndrom. Dtsch Gesundh Wesen. 1981;36: 545-551.
3. Recommendations for the management of patients with metabolic syndrome. Clinical guidelines Ministry of Health of the Russian Federation. 2013. 43 p. (In Russ.). Dostupno po: https://mzdrav.rk.gov.ru/file/mzdrav_18042014_Klinicheskie_rekomendacii_Metabolicheskij_sindrom.pdf. Ssylka aktivna na 09.12.2020.
4. Badin YuV, Fomin IV, Belenkov YuN, et al. EPOCHA-AH 1998-2017. Dynamics of prevalence, awareness of arterial hypertension, treatment coverage, and effective control of blood pressure in the European part of the Russian Federation. Kardiologiya. 2019;59(1S):34-42. (In Russ.). https://doi.org/10.18087/cardio.2445
5. Dedov II, Shestakova MV, Vikulova OK, et al. Atlas of diabetes register in Russian Federation, status 2018. Diabetes mellitus. 2019;22(S2-2):4-61. (In Russ.). https://doi.org/10.14341/DM12208
6. Dedov II, Shestakova MV, Vikulova OK, et al. Diabetes mellitus in Russian Federation: prevalence, morbidity, mortality, parameters of glycaemic control and structure of glucose lowering therapy according to the Federal Diabetes Register, status 2017. Diabetes mellitus. 2018;21(3):144-159. (In Russ.). https://doi.org/10.14341/DM9686
7. Shestakova MV, Vikulova OK, Zheleznyakova AV, et al. Diabetes epidemiology in Russia: what has changed over the decade? Therapeutic Archive. 2019;91(10):4-13. (in Russ.). https://doi.org/10.26442/00403660.2019.10.000364
8. Basantsova NYu., Tibekina LM., Shishkin AN. Features of cardiovascular regulation in patients of different ages in the acute period of ischemic stroke against the background of metabolic syndrome. Zdorov’ye - osnova chelovecheskogo potentsiala: problemy i puti ikh resheniya. 2018;13(1):218-223. (In Russ.).
9. Kraiem N, Polyakov DS, Fomin IV, et al. Time-related changes in prevalence of chronic heart failure and diabetes mellitus in Nizhny Novgorod Region between 2000 and 2017. Kardiologiia. 2018;58(2S):25-32. (In Russ.). https://doi.org/10.18087/cardio.2439
10. Glavatskikh KYu, Lukyanova IYu, Shalnev VI, Pchelin IYu. Impact of comborbide load on clinical course of inferior wall myocardial infarction with right ventricular involvement. Emergency medical care. 2019;20(4):63-70. (In Russ.). https://doi.org/10.24884/2072-6716-2019-20-4-63-70
11. Saklayen MG. The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep. 2018;20(2):12. https://doi.org/10.1007/s11906-018-0812-z
12. Wildman RP, Muntner P, Reynolds K, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Arch Int Med. 2008;168:1617-1624. https://doi.org/10.1001/archinte.168.15.1617
13. Boyarinova MA, Orlov AV, Rotar’ OP, et al. Adipokines Level in Metabolically Healthy Obese Saint-Petersburg Inhabitants (ESSE-RF). Kardiologiia. 2016;56(8):40-45. (In Russ.). https://doi.org/10.18565/cardio.2016.8.40-45
14. Ryabaya IN, Serdechnaya EV. Atrial fibrillation in obese patients in therapeutic practice. Kursk Scientific and Practical Bulletin «Man and His Health». 2018;(1):30-35. (In Russ.). https://doi.org/10.21626/vestnik/2018-1/05
15. Varlamov O, Chu M, Cornea A, et al. Cell-autonomous heterogeneity of nutrient uptake in white adipose tissue of rhesus macaques. Endocrinology. 2015;156(1):80-89. https://doi.org/10.1210/en.2014-1699
16. Lee KY, Sharma R, Gase G, et al. Tbx15 defines a glycolytic subpopulation and white adipocyte heterogeneity. Diabetes. 2017;66(11):2822-2829. https://doi.org/10.2337/db17-0218
17. Hagberg CE, Li Q, Kutschke M, et al. Flow cytometry of mouse and human adipocytes for the analysis of browning and cellular heterogeneity. Cell Rep. 2018;24(10):2746-2756.e5. https://doi.org/10.1016/j.celrep.2018.08.006
18. Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol. 2019;20(4):242-258. https://doi.org/10.1038/s41580-018-0093-z
19. Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116(1):39-48. https://doi.org/10.1161/circulationaha.106.675355
20. Hammarstedt A, Gogg S, Hedjazifar S, et al. Impaired Adipogenesis and Dysfunctional Adipose Tissue in Human Hypertrophic Obesity. Physiol Rev. 2018;98(4):1911-1941. https://doi.org/10.1152/physrev.00034.2017
21. Farooq R, Amin S, Hayat Bhat M, et al. Type 2 diabetes and metabolic syndrome - adipokine levels and effect of drugs. Gynecol Endocrinol. 2017;33(1):75-78. https://doi.org/10.1080/09513590.2016.1207165
22. Kumari R, Kumar S, Kant R. An update on metabolic syndrome: Metabolic risk markers and adipokines in the development of metabolic syndrome. Diabetes Metab Syndr. 2019;13(4):2409-2417. https://doi.org/10.1016/j.dsx.2019.06.005
23. Dolgikh YuA, Verbovoy AF, Mitroshina YeV. Assessment of hormonal and metabolic parameters and the state of the cardiovascular system in obesity, manifested in adolescence in young men. Spravochnik vracha obshchey praktiki. 2013;1:041-049. (In Russ.).
24. Martins Mdo C, Lima Faleiro L, Fonseca A. Relação entre a leptina, a massa corporal e a síndrome metabólica numa amostra da população adulta [Relationship between leptin and body mass and metabolic syndrome in an adult population]. Rev Port Cardiol. 2012;31(11):711-719. https://doi.org/10.1016/j.repc.2012.08.002
25. Liu W, Zhou X, Li Y, et al. Serum leptin, resistin, and adiponectin levels in obese and non-obese patients with newly diagnosed type 2 diabetes mellitus: A population-based study. Medicine (Baltimore). 2020;99(6):e19052. https://doi.org/10.1097/MD.0000000000019052
26. Klimontov VV, Bulumbaeva DM, Bgatova NP, et al. Serum adipokine concentrations in patients with type 2 diabetes: the relationships with distribution, hypertrophy and vascularization of subcutaneous adipose tissue. Diabetes Mellitus. 2019;22(4):336-347. (In Russ.). https://doi.org/10.14341/DM10129
27. Zieba DA, Biernat W, Barć J. Roles of leptin and resistin in metabolism, reproduction, and leptin resistance. Domest Anim Endocrinol. 2020;73:106472. https://doi.org/10.1016/j.domaniend.2020.106472
28. Farimani AR, Hariri M, Azimi-Nezhad M, et al. The effect of n-3 PUFAs on circulating adiponectin and leptin in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Acta Diabetol. 2018;55(7):641-652. https://doi.org/10.1007/s00592-018-1110-6
29. Friedman JM. The function of leptin in nutrition, weight, and physiology. Nutr Rev. 2002;60(10 pt 2):S1-S14. https://doi.org/10.1301/002966402320634878
30. Farooqi IS, O’Rahilly S. 20 years of leptin: human disorders of leptin action. J Endocrinol. 2014;223(1):T63-T70. https://doi.org/10.1530/joe-14-0480
31. Flier JS. Hormone resistance in diabetes and obesity: insulin, leptin, and FGF21. Yale J Biol Med. 2012;85(3):405-414.
32. Kalinovskaya EI, Kondrashova SB, Poluliakh OE, et al. Stress-induced changes in the level of adipokines in the blood serum of rats with alimentary obesity. Proceedings of the National Academy of Sciences of Belarus, medical series. 2017;2:71-77. (In Russ.).
33. Verbovoy AF, Mitroshina EV, Dolgih YuA. Adipokines, insulin resistance and activity of the sympathoadrenal system in young men with adolescent obesity. Obesity and Metabolism. 2012;9(2):49-52. (In Russ.).
34. Verbovoy AF, Tsanava IA, Verbovaya NI. Adipokines and metabolic parameters in patients with type 2 diabetes mellitus in combination with gout. Obesity and Metabolism. 2016;3(1):20-24. (In Russ.). https://doi.org/10.14341/omet2016120-24
35. Ghadge AA, Khaire AA. Leptin as a predictive marker for metabolic syndrome. Cytokine. 2019;121:154735. https://doi.org/10.1016/j.cyto.2019.154735.
36. Wu P, Wen W, Li J, et al. Systematic Review and Meta-Analysis of Randomized Controlled Trials on the Effect of SGLT2 Inhibitor on Blood Leptin and Adiponectin Level in Patients with Type 2 Diabetes. Horm Metab Res. 2019;51(8):487-494. https://doi.org/10.1055/a-0958-2441
37. Rodionova LV, Plechova NG, Bogdanov DY, Zaharchuk NV. The serum levels of adipokines in individuals with different cardiovascular risk. Pacific Medical Journal. 2017;4(70):77-82. (In Russ.). https://doi.org/10.17238/pmj1609-1175.2017.4.77-82
38. Sakovskaia A, Nevzorova V, Brodskaya T, Chkalovec I. Condition aortic stiffness and content of adipokines in the serum of patients with essential hypertension in young and middle-aged. Journal of Hypertension. 2015;33(l-1):182. https://doi.org/10.1097/01.hjh.0000467889.58341.7c
39. Kyrychenko NM. Features of adipokines metabolism in women with arterial hypertension and obesity, depending on the left ventricular diastolic function. Semeynaya meditsina. 2019;5-6(85):87-90. (In Russ.). https://doi.org/10.30841/2307-5112.5-6.2019.194133
40. Mateesku KA, Lebedev PA, Scherbakova NF. Implication of adipokines in the cascade of inflammatory and metabolic reactions in the dynamics of st elevation myocardial infarction. Aspirantskiy Vestnik Povolzhiya. 2016;16(1-2):190-195. (In Russ.). https://doi.org/10.17816/2072-2354.2016.0.1-2.190-195
41. Fisman EZ, Tenenbaum A. Adiponectin: a manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovasc Diabetol. 2014;13:103. https://doi.org/10.1186/1475-2840-13-103
42. Hug C, J. Wang NS, Ahmad NS, et al. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc. Natl. Acad. Sci. USA. 2004;101(28):10308-10313. https://doi.org/10.1073/pnas.0403382101
43. Kubota N, Yano W, Kubota T, et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 2007;6(1):55-68. https://doi.org/10.1016/j.cmet.2007.06.003
44. Chaieb A, Mahjoub T, Almawi WY. Single-nucleotide polymorphisms and haplotypes in the adiponectin gene contribute to the genetic risk for type 2 diabetes in Tunisian Arabs. Diabetes Res Clin Pract. 2012;97(2):290-297. https://doi.org/10.1016/j.diabres.2012.02.015
45. Okada-Iwabu M, Iwabu M, Yamauchi T, Kadowaki T. Structure and function analysis of adiponectin receptors toward development of novel antidiabetic agents promoting healthy longevity. Endocr J. 2018;65(10):971-977. https://doi.org/10.1507/endocrj.ej18-0310
46. Turer AT, Scherer PE. Adiponectin: mechanistic insights and clinical implications. Diabetologia. 2012;55(9):2319-2326. https://doi.org/10.1007/s00125-012-2598-x
47. Benrick A, Chanclón B, Micallef P, et al. Adiponectin protects against development of metabolic disturbances in a PCOS mouse model. Proc Natl Acad Sci USA. 2017;114(34):E7187-E7196. https://doi.org/10.1073/pnas.1708854114
48. Whitehead JP, Richards AA, Hickman IJ, et al. Adiponectin - a key adipokine in the metabolic syndrome. Diabetes Obes Metab. 2006;8(3):264-280. https://doi.org/10.1111/j.1463-1326.2005.00510.x
49. Brocker C, Thompson D, Matsumoto A, et al. Evolutionary divergence and functions of human interleukin (IL) gene family. Hum Genomics. 2010;5(1):30-55. https://doi.org/10.1186/1479-7364-5-1-30
50. Katagiri H, Yamada T, Oka Y. Adiposity and cardiovascular disorders: disturbance of the regulatory system consisting of humoral and neuronal signals. Circ Res. 2007;101(1):27-39. https://doi.org/10.1161/circresaha.107.151621
51. uzmina LP, Khotuleva AG. Adipokines as markers of metabolic disorders in occupational asthma. Mezhdunarodnyy nauchno-issledovatel’skiy zhurnal. 2016;12-5(54):100-102. (in Russ.). https://doi.org/10.18454/IRJ.2016.54.143
52. Mitroshina YeV. Vzaimosvyaz’ urovney adiponektina s pokazatelyami lipidnogo i uglevodnogo obmena u yunoshey i muzhchin s ozhireniyem, manifestirovavshim v pubertatnyy period. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. 2011;18(2):11-18. (in Russ.).
53. Banerjee A, Khemka VK, Roy D, et al. Role of Serum Adiponectin and Vitamin D in Prediabetes and Diabetes Mellitus. Can J Diabetes. 2017;41(3):259-265. https://doi.org/10.1016/j.jcjd.2016.10.006
54. Abdella NA, Mojiminiyi OA. Clinical Applications of Adiponectin Measurements in Type 2 Diabetes Mellitus: Screening, Diagnosis, and Marker of Diabetes Control. Dis Markers. 2018;2018:1-6. https://doi.org/10.1155/2018/5187940
55. Reinehr T, Woelfle J, Wiegand S, et al. Leptin but not adiponectin is related to type 2 diabetes mellitus in obese adolescents. Pediatr Diabetes. 2016;17(4):281-288. https://doi.org/10.1111/pedi.12276
56. Nedogoda SV, Chumachek EV, Tsoma VV, et al. Effectiveness of in insulin resistance correction and the adipokines level reduction in patients with arterial hypertension in comparison with other ARBs. Russian Journal of Cardiology. 2019;1:70-79. (In Russ.). https://doi.org/10.15829/1560-4071-2019-1-70-79
57. Nedogoda SV, Chumachek EV, Tsoma VV, et al. Azilsartan medoxomil for improving insulin resistance and adipokine levels in hypertension in comparison with angiotensin-converting enzyme inhibitors. Russ J Cardiol. 2020;25(7):3767. (In Russ.). https://doi.org/10.15829/1560-4071-2020-3767
58. Knights AJ, Funnell AP, Pearson RC, et al. Adipokines and insulin action: A sensitive issue. Adipocyte. 2014;3(2):88-96. https://doi.org/10.4161/adip.27552
59. Derosa G, Catena G, Gaudio G, et al. Adipose tissue dysfunction and metabolic disorders: Is it possible to predict who will develop type 2 diabetes mellitus? Role of markErs in the progreSsion of dIabeteS in obese paTIeNts (The RESISTIN trial). Cytokine. 2020;127:154947. https://doi.org/10.1016/j.cyto.2019.154947
60. Park HK, Kwak MK, Kim HJ, Ahima RS. Linking resistin, inflammation, and cardiometabolic diseases. Korean J Intern Med. 2017;32(2):239-247. https://doi.org/10.3904/kjim.2016.229
61. Cobbold C. Type 2 diabetes mellitus risk and exercise: is resistin involved? J Sports Med Phys Fitness. 2019;59(2):290-297. https://doi.org/10.23736/S0022-4707.18.08258-0
62. Park HK, Ahima RS. Resistin in rodents and humans. Diabetes Metab J. 2013;37:404-414. https://doi.org/10.4093/dmj.2013.37.6.404
63. Menzaghi C, Bacci S, Salvemini L, et al. Serum resistin, cardiovascular disease and all-cause mortality in patients with type 2 diabetes. PLoS One. 2014;8:e64729. https://doi.org/10.1371/journal.pone.0064729
64. Losano G, Folino A, Rastaldo R. Role of three adipokines in metabolic syndrome. Pol Arch Med Wewn. 2016;126(4):219-221. https://doi.org/10.20452/pamw.3386
65. Jamaluddin MS, Yan S, Lu J, et al. Resistin increases monolayer permeability of human coronary artery endothelial cells. PLoS One. 2013;8:e84576. https://doi.org/10.1371/journal.pone.0084576
66. Khera AV, Qamar A, Murphy SA, et al. On-statin resistin, leptin, and risk of recurrent coronary events after hospitalization for an acute coronary syndrome (from the pravastatin or atorvastatin evaluation and infection therapy-thrombolysis in myocardial infarction 22 study). Am J Cardiol. 2015;116:694-698. https://doi.org/10.1016/j.amjcard.2015.05.038
67. Avsaragova AZ, Astahova ZT, Remizov OV. Influence of adipokine resistin on the risk of development of cardiovascular complications in patients with acute coronary syndrome. Journal of New Medical Technologies. 2019;4:49-52. (in Russ.). https://doi.org/10.24411/1609-2163-2019-16513
68. Badoer E, Kosari S, Stebbing MJ. Resistin, an adipokine with non-generalized actions on sympathetic nerve activity. Front Physiol. 2015;6:321. https://doi.org/10.3389/fphys.2015.00321
69. Fedotova AV, Chernysheva EN, Panova TN, Akhtyamova KV. The relationship of serum leptin and plasma apelin levels in men with metabolic syndrome. Almanac of Clinical Medicine. 2016;44(4):457-461. (in Russ.). https://doi.org/10.18786/2072-0505-2016-44-4-457-461
70. Boucher J, Masri B, Daviaud D, et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology. 2005;146:1764-1771. https://doi.org/10.1210/en.2004-1427
71. Ma WY, Yu TY, Wei JN, et al. Plasma apelin: A novel biomarker for predicting diabetes. Clin Chim Acta. 2014;435:18-23. https://doi.org/10.1016/j.cca.2014.03.030
72. Habchi M, Duvillard L, Cottet V, et al. Circulating apelin is increased in patients with type 1 or type 2 diabetes and is associated with better glycaemic control. Clin Endocrinol (Oxf). 2014;81(5):696-701. https://doi.org/10.1111/cen.12404
73. Zhang BH, Wang W, Wang H, et al. Promoting effects of the adipokine, apelin, on diabetic nephropathy. PLoS One. 2013;8(4):e60457. https://doi.org/10.1371/journal.pone.0060457
74. Fedotova AV, Panova TN, Demidov AA, Chernysheva YeN. Apelin plasma level in patients with arterial hypertension and obesity. Kardiologicheskiy vestnik. 2015;10(4):44-48. (In Russ.).
75. Koval SN, Yushko KA, Starchenko TG. Apelin of blood in patients with essential hypertension and type 2 diabetes and without it in the dynamics of combined therapy. Nauchnyy rezul’tat. 2014;1(2):4-11. (In Russ.).
76. Xie H, Luo G, Zheng Y, et al. Lowered circulating apelin is significantly associated with an increased risk for hypertension: A meta-analysis. Clin Exp Hypertens. 2017;39(5):435-440. https://doi.org/10.1080/10641963.2016.1267199
Review
For citations:
Verbovoy A.F., Verbovaya N.I., Dolgikh Yu.A. Obesity is the basis of metabolic syndrome. Obesity and metabolism. 2021;18(2):142-149. (In Russ.) https://doi.org/10.14341/omet12707

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
ISSN 2306-5524 (Online)