Preview

Obesity and metabolism

Advanced search

Subclinical hypothyroidism and metabolic syndrome: reasons for drug intervention

https://doi.org/10.14341/omet12282

Abstract

The high prevalence of metabolic syndrome (MS) and subclinical hypothyroidism (SHypo) creates danger of integral cardio-metabolic risk (CMR). A concept is being developed to increase thyroid-stimulating hormone (TSH) levels as a component of MS with the key role of insulin resistance (IR). To identify groups of active intervention, the definitions of SHypo with age and gender characteristics are analyzed. The results of randomized clinical trials showed a higher incidence of prediabetes and type 2 diabetes mellitus (T2DM) in SHypo, as well as positive associations of autoimmune thyroiditis (AIT) with components of MS, especially in postmenopausal women. The association of SHypo with a systemic inflammatory response is analyzed, which can determine an increase in cardio-metabolic risk. At the same time, most of the thyroid dysfunction and the components of MS are associated with insulin resistance.


The feasibility of SHypo treating with levothyroxine is discussed: the threshold parameters of thyroid-stimulating hormone (TSH) are not determined for initiating treatment; in old age, due to a decrease in the need for thyroid hormones, an increase in the upper reference range of TSH is discussed; there is no evidence of a decrease in cardiovascular risk and mortality. In parallel, data have been accumulated on a decrease in TSH levels in overt and subclinical hypothyroidism in patients with MS and T2DM with metformin therapy. The gender effect of metformin on the activity of the hypothalamus-pituitary-thyroid axis was suggested, its new antihyperglycemic mechanism of action, including the activation of the AMP protein kinase (adenosine monophosphate (AMP) -activated protein kinase) in the pituitary gland, was revealed.


It is possible that metformin is a promising therapeutic agent not only for patients with type 2 diabetes and thyroid disease, but also for MS and obesity. The multifaceted capabilities of metformin, including the correction of peripheral and central insulin resistance and a decrease in TSH levels in patients with SHypo, emphasizes an integrated approach to the prevention of CMR. The prolonged release form of metformin has several advantages: better tolerance, greater efficiency in the correction of IR, lipid and carbohydrate metabolism, additional indication - treatment of prediabetes, the possibility of prescribing for creatinine clearance up to 30 ml/min.

About the Authors

Lyudmila A. Ruyatkina
Novosibirsk State Medical University
Russian Federation

MD, PhD, Professor



Dmitriy S. Ruyatkin
Novosibirsk State Medical University
Russian Federation

MD, PhD



References

1. Du F-M, Kuang H-Y, Duan B-H, et al. Associations Between Thyroid Hormones Within the Euthyroid Range and Indices of Obesity in Obese Chinese Women of Reproductive Age. Metab Syndr Relat Disord. 2019;17(8):416-422. DOI:10.1089/met.2019.0036

2. Руяткина Л.А., Руяткин Д.С. Интегральный сердечно-сосудистый риск: метаболический синдром и дисфункция щитовидной железы. // Сибирское медицинское обозрение. — 2010. — №4. — С. 11-16. [Ruyatkina LA, Ruyatkin DS. Integral cardiovascular risk: metabolic syndrome and thyroid dysfunction. Siberian medical review. 2010;(4):11-16. (In Russ.)]

3. Mohan V, Bodhini D. Mediators of insulin resistance & cardiometabolic risk: Newer insights. Indian J Med Res. 2018;148(2):127. DOI:10.4103/ijmr.IJMR_969_18

4. Руяткина Л.А., Руяткин Д.С., Исхакова И.С. Возможности и варианты суррогатной оценки инсулинорезистентности. // Ожирение и метаболизм. — 2019. — Т. 16. — №1. — С. 27-32. [Ruyatkina LA, Ruyatkin DS, Iskhakova IS. Opportunities and options for surrogate assessment of insulin resistance. Obesity and metabolism. 2019;16(1):27-32. (In Russ.)] DOI:10.14341/omet10082

5. Park SY, Park SE, Jung SW, et al. Free triiodothyronine/free thyroxine ratio rather than thyrotropin is more associated with metabolic parameters in healthy euthyroid adult subjects. Clin Endocrinol. 2017;87(1):87-96. DOI:10.1111/cen.13345

6. Yang L, Lv X, Yue F, et al. Subclinical hypothyroidism and the risk of metabolic syndrome: A meta-analysis of observational studies. Endocr Res. 2016;41(2):158-165. DOI:10.3109/07435800.2015.1108332

7. Eftekharzadeh A, Khamseh ME, Farshchi A, Malek M. The Association Between Subclinical Hypothyroidism and Metabolic Syndrome as Defined by the ATP III Criteria. Metab Syndr Relat Disord. 2016;14(3):137-144. DOI:10.1089/met.2015.0065

8. Nakajima Y, Yamada M, Akuzawa M, et al. Subclinical Hypothyroidism and Indices for Metabolic Syndrome in Japanese Women: One-Year Follow-Up Study. J Clin Endocrinol Metab. 2013;98(8):3280-3287. DOI:10.1210/jc.2013-1353

9. Amouzegar A, Mehran L, Takyar M, et al. Tehran Thyroid Study (TTS). Int J Endocrinol Metab. 2018;16(4 Suppl):e84727. DOI:10.5812/ijem.84727

10. Amouzegar A, Kazemian E, Abdi H, et al. Association Between Thyroid Function and Development of Different Obesity Phenotypes in Euthyroid Adults: A Nine-Year Follow-Up. Thyroid. 2018;28(4):458-464. DOI:10.1089/thy.2017.0454

11. Iwen KA, Oelkrug R, Kalscheuer H, Brabant G. Metabolic Syndrome in Thyroid Disease. Front Horm Res. 2018;49:48-66. DOI:10.1159/000485996

12. Razvi S, Jabbar A, Pingitore A, et al. Thyroid Hormones and Cardiovascular Function and Diseases. J Am Coll Cardiol. 2018;71(16):1781-1796. DOI:10.1016/j.jacc.2018.02.045

13. Gyawali P, Takanche JS, Shrestha RK, et al. Pattern of thyroid dysfunction in patients with metabolic syndrome and its relationship with components of metabolic syndrome. Diabetes Metab J. 2015;39(1):66-73. DOI:10.4093/dmj.2015.39.1.66

14. Duntas LH, Chiovato L. Cardiovascular Risk in Patients with Subclinical Hypothyroidism. Eur Endocrinol. 2014;10(2):157-160. DOI:10.17925/EE.2014.10.02.157

15. Biondi B, Cooper DS. The clinical significance of subclinical thyroid dysfunction. Endocr Rev. 2008;29(1):76-131. DOI:10.1210/er.2006-0043

16. Floriani C, Gencer B, Collet TH, Rodondi N. Subclinical thyroid dysfunction and cardiovascular diseases: 2016 update. Eur Heart J. 2018;39(7):503-507. DOI:10.1093/eurheartj/ehx050

17. Mendes D, Alves C, Silverio N, Batel Marques F. Prevalence of Undiagnosed Hypothyroidism in Europe: A Systematic Review and Meta-Analysis. Eur Thyroid J. 2019;8(3):130-143. DOI:10.1159/000499751

18. Tekle HA, Bobe TM, Tufa EG, Solomon FB. Age-sex disparities and sub-clinical hypothyroidism among patients in Tikur Anbesa Specialized Hospital, Addis Ababa, Ethiopia. J Health Popul Nutr. 2018;37(1):18. DOI:10.1186/s41043-018-0149-x

19. Surks MI, Ortiz E, Daniels GH, et al. Subclinical thyroid disease: scientific review and guidelines for diagnosis and management. JAMA. 2004;291(2):228-238. DOI:10.1001/jama.291.2.228

20. Polikar R, Burger AG, Scherrer U, Nicod P. The thyroid and the heart. Circulation. 1993;87(5):1435-1441. DOI:10.1161/01.cir.87.5.1435

21. Kahaly GJ. Cardiovascular and atherogenic aspects of subclinical hypothyroidism. Thyroid. 2000;10(8):665-679. DOI:10.1089/10507250050137743

22. Tseng FY, Lin WY, Lin CC, et al. Subclinical hypothyroidism is associated with increased risk for all-cause and cardiovascular mortality in adults. J Am Coll Cardiol. 2012;60(8):730-737. DOI:10.1016/j.jacc.2012.03.047

23. Некрасова Т.А., Стронгин Л.Г., Морозова Е.П., и др. Модифицирующее влияние субклинического гипотиреоза на течение артериальной гипертензии: взаимосвязи со скрытой неэффективностью лечения, суточным профилем артериального давления и состоянием органов-мишеней. // Клиническая и экспериментальная тиреоидология. — 2015. — Т. 11. — №2. — С. 55-62. [Nekrasova TA, Strongin LG, Morozova EP, et al. Modifying influence of subclinical hypothyroidism on arterial hypertension: relationship to masked treatment failure, circadian blood pressure profile and target organs status. Clinical and experimental thyroidology. 2015;11(2):55-62. (In Russ.)] DOI:10.14341/ket2015255-62

24. Owen PJ, Sabit R, Lazarus JH. Thyroid disease and vascular function. Thyroid. 2007;17(6):519-524. DOI:10.1089/thy.2007.0051

25. Rodondi N, Bauer DC, Cappola AR, et al. Subclinical thyroid dysfunction, cardiac function, and the risk of heart failure. The Cardiovascular Health study. J Am Coll Cardiol. 2008;52(14):1152-1159. DOI:10.1016/j.jacc.2008.07.009

26. Hak AE, Pols HA, Visser TJ, et al. Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam Study. Ann Intern Med. 2000;132(4):270-278. DOI:10.7326/0003-4819-132-4-200002150-00004

27. Bielecka-Dabrowa A, Godoy B, Suzuki T, et al. Subclinical hypothyroidism and the development of heart failure: an overview of risk and effects on cardiac function. Clin Res Cardiol. 2019;108(3):225-233. DOI:10.1007/s00392-018-1340-1

28. Dhital R, Poudel DR, Tachamo N, et al. Ischemic Stroke and Impact of Thyroid Profile at Presentation: A Systematic Review and Meta-analysis of Observational Studies. J Stroke Cerebrovasc Dis. 2017;26(12):2926-2934. DOI:10.1016/j.jstrokecerebrovasdis.2017.07.015

29. Gong Y, Ma Y, Ye Z, et al. Thyroid stimulating hormone exhibits the impact on LDLR/LDL-c via up-regulating hepatic PCSK9 expression. Metabolism. 2017;76:32-41. DOI:10.1016/j.metabol.2017.07.006

30. Ebrahimpour A, Vaghari-Tabari M, Qujeq D, et al. Direct correlation between serum homocysteine level and insulin resistance index in patients with subclinical hypothyroidism: Does subclinical hypothyroidism increase the risk of diabetes and cardio vascular disease together? Diabetes Metab Syndr. 2018;12(6):863-867. DOI:10.1016/j.dsx.2018.05.002

31. Sieminska L, Wojciechowska C, Walczak K, et al. Associations between metabolic syndrome, serum thyrotropin, and thyroid antibodies status in postmenopausal women, and the role of interleukin-6. Endokrynol Pol. 2015;66(5):394-403. DOI:10.5603/EP.2015.0049

32. Altay S, Onat A, Can G, et al. High-normal thyroid-stimulating hormone in euthyroid subjects is associated with risk of mortality and composite disease endpoint only in women. Arch Med Sci. 2018;14(6):1394-1403. DOI:10.5114/aoms.2016.63264

33. Gupta G, Sharma P, Kumar P, Itagappa M. Study on Subclinical Hypothyroidism and its Association with Various Inflammatory Markers. J Clin Diagn Res. 2015;9(11):BC04-06. DOI:10.7860/JCDR/2015/14640.6806

34. Liu J, Duan Y, Fu J, Wang G. Association Between Thyroid Hormones, Thyroid Antibodies, and Cardiometabolic Factors in Non-Obese Individuals With Normal Thyroid Function. Front Endocrinol (Lausanne). 2018;9:130. DOI:10.3389/fendo.2018.00130

35. Chen Y, Zhu C, Chen Y, et al. Are Thyroid Autoimmune Diseases Associated with Cardiometabolic Risks in a Population with Normal Thyroid-Stimulating Hormone? Mediators Inflamm. 2018;2018:1856137. DOI:10.1155/2018/1856137

36. Roifman I, Beck PL, Anderson TJ, et al. Chronic inflammatory diseases and cardiovascular risk: a systematic review. Can J Cardiol. 2011;27(2):174-182. DOI:10.1016/j.cjca.2010.12.040

37. Xu C, Zhou L, Wu K, et al. Abnormal Glucose Metabolism and Insulin Resistance Are Induced via the IRE1alpha/XBP-1 Pathway in Subclinical Hypothyroidism. Front Endocrinol (Lausanne). 2019;10:303. DOI:10.3389/fendo.2019.00303

38. Brenta G, Caballero AS, Nunes MT. Case Finding for Hypothyroidism Should Include Type 2 Diabetes and Metabolic Syndrome Patients: A Latin American Thyroid Society (Lats) Position Statement. Endocr Pract. 2019;25(1):101-105. DOI:10.4158/EP-2018-0317

39. Chang YC, Hua SC, Chang CH, et al. High TSH Level within Normal Range Is Associated with Obesity, Dyslipidemia, Hypertension, Inflammation, Hypercoagulability, and the Metabolic Syndrome: A Novel Cardiometabolic Marker. J Clin Med. 2019;8(6). DOI:10.3390/jcm8060817

40. Feller M, Snel M, Moutzouri E, et al. Association of Thyroid Hormone Therapy With Quality of Life and Thyroid-Related Symptoms in Patients With Subclinical Hypothyroidism: A Systematic Review and Meta-analysis. JAMA. 2018;320(13):1349-1359. DOI:10.1001/jama.2018.13770

41. Andersen MN, Olsen AM, Madsen JC, et al. Levothyroxine Substitution in Patients with Subclinical Hypothyroidism and the Risk of Myocardial Infarction and Mortality. PLoS One. 2015;10(6):e0129793. DOI:10.1371/journal.pone.0129793

42. Andersen MN, Olsen AS, Madsen JC, et al. Long-Term Outcome in Levothyroxine Treated Patients With Subclinical Hypothyroidism and Concomitant Heart Disease. J Clin Endocrinol Metab. 2016;101(11):4170-4177. DOI:10.1210/jc.2016-2226

43. Jasim S, Gharib H. Thyroid and Aging. Endocr Pract. 2018;24(4):369-374. DOI:10.4158/EP171796.RA

44. Leng O, Razvi S. Hypothyroidism in the older population. Thyroid Res. 2019;12:2. DOI:10.1186/s13044-019-0063-3

45. Vigersky RA, Filmore-Nassar A, Glass AR. Thyrotropin suppression by metformin. J Clin Endocrinol Metab. 2006;91(1):225-227. DOI:10.1210/jc.2005-1210

46. Lupoli R, Di Minno A, Tortora A, et al. Effects of treatment with metformin on TSH levels: a meta-analysis of literature studies. J Clin Endocrinol Metab. 2014;99(1):E143-148. DOI:10.1210/jc.2013-2965

47. Fournier JP, Yin H, Yu OH, Azoulay L. Metformin and low levels of thyroid-stimulating hormone in patients with type 2 diabetes mellitus. CMAJ. 2014;186(15):1138-1145. DOI:10.1503/cmaj.140688

48. Distiller LA, Polakow ES, Joffe BI. Type 2 diabetes mellitus and hypothyroidism: the possible influence of metformin therapy. Diabet Med. 2014;31(2):172-175. DOI:10.1111/dme.12342

49. Nurcheshmeh Z, Aliasgarzadeh A, Bahrami A, Mobasseri M. The Effects of Metformin on Thyroid Function among Patients with Subclinical Hypothyroidism and Coexisting Metabolic Syndrome. Pharm Sci. 2018;24(2):118-123. DOI:10.15171/ps.2018.18

50. Palui R, Sahoo J, Kamalanathan S, et al. Effect of metformin on thyroid function tests in patients with subclinical hypothyroidism: an open-label randomised controlled trial. J Endocrinol Invest. 2019;42(12):1451-1458. DOI:10.1007/s40618-019-01059-w

51. Krysiak R, Szkrobka W, Okopien B. Sex-dependent effect of metformin on hypothalamic-pituitary-thyroid axis activity in patients with subclinical hypothyroidism. Pharmacol Rep. 2016;68(6):1115-1119. DOI:10.1016/j.pharep.2016.07.002

52. Meng X, Xu S, Chen G, et al. Metformin and thyroid disease. J Endocrinol. 2017;233(1):R43-R51. DOI:10.1530/JOE-16-0450

53. Cetinkalp S, Simsir IY, Ertek S. Insulin resistance in brain and possible therapeutic approaches. Curr Vasc Pharmacol. 2014;12(4):553-564. DOI:10.2174/1570161112999140206130426

54. Wang B, Cheng KK. Hypothalamic AMPK as a Mediator of Hormonal Regulation of Energy Balance. Int J Mol Sci. 2018;19(11). DOI:10.3390/ijms19113552

55. Руяткина Л.А., Руяткин Д.С. Многоплановые эффекты метформина у пациентов с сахарным диабетом 2 типа. // Сахарный диабет. – 2017. – Т. 20. – № 3. – С. 210-219. [Ruyatkina LA, Ruyatkin DS. Multidimensional effects of metformin in patients with type 2 diabetes. Diabetes mellitus. 2017;20(2):210-219. (In Russ.)] DOI:10.14341/DM2003458-64

56. Cho K, Chung JY, Cho SK, et al. Antihyperglycemic mechanism of metformin occurs via the AMPK/LXRalpha/POMC pathway. Sci Rep. 2015;5:8145. DOI:10.1038/srep08145

57. Andrade BM, de Carvalho DP. Perspectives of the AMP-activated kinase (AMPK) signalling pathway in thyroid cancer. Biosci Rep. 2014;34(2). DOI:10.1042/BSR20130134

58. Piskovatska V, Stefanyshyn N, Storey KB, et al. Metformin as a geroprotector: experimental and clinical evidence. Biogerontology. 2019;20(1):33-48. DOI:10.1007/s10522-018-9773-5

59. Дедов И.И., Шестакова М.В., Майоров А.Ю., и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. / Под ред. Дедова И.И., Шестаковой М.В., Майорова А.Ю. 9-й выпуск. // Сахарный диабет. — 2019. — Т. 22. — №S1. — С. 1-144. [Dedov II, Shestakova MV, Mayorov AY, et al. Dedov II, Shestakova MV, Mayorov AY, editors. Standards of specialized diabetes care. 9th ed. Diabetes mellitus. 2019;22(S1):1-144. (In Russ.)] DOI:10.14341/DM221S1

60. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2015;3(11):866-875. DOI:10.1016/s2213-8587(15)00291-0

61. Derosa G, D’Angelo A, Romano D, Maffioli P. Effects of metformin extended release compared to immediate release formula on glycemic control and glycemic variability in patients with type 2 diabetes. Drug Des Devel Ther. 2017;11:1481-1488. DOI:10.2147/dddt.s131670

62. rlsnet.ru [интернет]. Глюкофаж® Лонг (Glucophage® long) [доступ от 25.04.2020]. Доступ по ссылке: https://www.rlsnet.ru/tn_index_id_45613.htm. [Rlsnet.ru [Internet]. Glucophage® long [cited 2020 Apr 25]. Available from: https://www.rlsnet.ru/tn_index_id_45613.htm. (In Russ.)]

63. Mehran L, Amouzegar A, Azizi F. Thyroid disease and the metabolic syndrome. Current Opinion in Endocrinology & Diabetes and Obesity. 2019;26(5):256-265. DOI:10.1097/med.0000000000000500

64. Chiovato L, Magri F, Carle A. Hypothyroidism in Context: Where We’ve Been and Where We’re Going. Adv Ther. 2019;36(Suppl 2):47-58. DOI:10.1007/s12325-019-01080-8

65. Sui M, Yu Y, Zhang H, et al. Efficacy of Metformin for Benign Thyroid Nodules in Subjects With Insulin Resistance: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne). 2018;9:494. DOI:10.3389/fendo.2018.00494

66. Yildirim Simsir I, Cetinkalp S, Kabalak T. Review of Factors Contributing to Nodular Goiter and Thyroid Carcinoma. Med Princ Pract. 2020;29(1):1-5. DOI:10.1159/000503575


Supplementary files

Review

For citations:


Ruyatkina L.A., Ruyatkin D.S. Subclinical hypothyroidism and metabolic syndrome: reasons for drug intervention. Obesity and metabolism. 2020;17(1):41-47. (In Russ.) https://doi.org/10.14341/omet12282

Views: 14050


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)