Preview

Obesity and metabolism

Advanced search

The relationship of vitamin D status with the development and course of diabetes mellitus type 1

https://doi.org/10.14341/omet12206

Abstract

Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease that develops as a result of a genetic predisposition and environmental factors. Literature data indicate that the suboptimal status of vitamin D can be considered as a risk factor for the development of T1DM, especially at some stages of life. Adequate vitamin D supplementation in childhood may provide a protective effect and reduce the risk of developing T1DM at a later age. Pathogenesis of T1DM predisposes to abnormalities in the metabolism of vitamin D, including the development of vitamin D deficiency. Moreover, the immunomodulating effect of calcitriol (induction of immune tolerance and T-cell anergy, impaired B-cell activity and antibodies production) suggests the therapeutic potential of vitamin D in autoimmune diseases, including T1DM. A number of studies have demonstrated the positive clinical effects of various vitamin D preparations with respect to maintaining residual β-cell function, improving glycemia control in patients with T1DM. Determining the optimal doses of vitamin D for patients with T1DM may contribute to disease control and prevention of complications.

About the Authors

Alexandra A. Povaliaeva
Endocrinology Research Centre
Russian Federation

M.D.



Ekaterina A. Pigarova
Endocrinology Research Centre
Russian Federation

MD, PhD



Larisa K. Dzeranova
Endocrinology Research Centre
Russian Federation

ScD



Liudmila Ya. Rozhinskaya
Endocrinology Research Centre
Russian Federation

MD, PhD, Professor



References

1. Pociot F, Lernmark Å. Genetic risk factors for type 1 diabetes. Lancet. 2016;387(10035):2331-2339. DOI:10.1016/s0140-6736(16)30582-7

2. Rewers M, Ludvigsson J. Environmental risk factors for type 1 diabetes. Lancet. 2016;387(10035):2340-2348. DOI:10.1016/s0140-6736(16)30507-4

3. Chun RF, Peercy BE, Orwoll ES, et al. Vitamin D and DBP: the free hormone hypothesis revisited. J Steroid Biochem Mol Biol. 2014;144 Pt A:132-137. DOI:10.1016/j.jsbmb.2013.09.012

4. Yu C, Xue H, Wang L, et al. Serum Bioavailable and Free 25-Hydroxyvitamin D Levels, but Not Its Total Level, Are Associated With the Risk of Mortality in Patients With Coronary Artery Disease. Circ Res. 2018;123(8):996-1007. DOI:10.1161/CIRCRESAHA.118.313558

5. Liu C, Lu M, Xia X, et al. Correlation of Serum Vitamin D Level with Type 1 Diabetes Mellitus in Children: A Meta-Analysis. Nutr Hosp. 2015;32(4):1591-1594. DOI:10.3305/nh.2015.32.4.9198

6. Feng R, Li Y, Li G, et al. Lower serum 25 (OH) D concentrations in type 1 diabetes: A meta-analysis. Diabetes Res Clin Pract. 2015;108(3):e71-75. DOI:10.1016/j.diabres.2014.12.008

7. Shen L, Zhuang Q-S, Ji H-F. Assessment of vitamin D levels in type 1 and type 2 diabetes patients: Results from metaanalysis. Mol Nutr Food Res. 2016;60(5):1059-1067. DOI:10.1002/mnfr.201500937

8. Dong JY, Zhang WG, Chen JJ, et al. Vitamin D intake and risk of type 1 diabetes: a meta-analysis of observational studies. Nutrients. 2013;5(9):3551-3562. DOI:10.3390/nu5093551

9. Zipitis CS, Akobeng AK. Vitamin D supplementation in early childhood and risk of type 1 diabetes: a systematic review and meta-analysis. Arch Dis Child. 2008;93(6):512-517. DOI:10.1136/adc.2007.128579

10. Stene LC, Joner G, Norwegian Childhood Diabetes Study G. Use of cod liver oil during the first year of life is associated with lower risk of childhood-onset type 1 diabetes: a large, population-based, case-control study. Am J Clin Nutr. 2003;78(6):1128-1134. DOI:10.1093/ajcn/78.6.1128

11. Hyppönen E, Läärä E, Reunanen A, et al. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet. 2001;358(9292):1500-1503. DOI:10.1016/s0140-6736(01)06580-1

12. Simpson M, Brady H, Yin X, et al. No association of vitamin D intake or 25-hydroxyvitamin D levels in childhood with risk of islet autoimmunity and type 1 diabetes: the Diabetes Autoimmunity Study in the Young (DAISY). Diabetologia. 2011;54(11):2779-2788. DOI:10.1007/s00125-011-2278-2

13. Makinen M, Mykkanen J, Koskinen M, et al. Serum 25-Hydroxyvitamin D Concentrations in Children Progressing to Autoimmunity and Clinical Type 1 Diabetes. J Clin Endocrinol Metab. 2016;101(2):723-729. DOI:10.1210/jc.2015-3504

14. Raab J, Giannopoulou EZ, Schneider S, et al. Prevalence of vitamin D deficiency in pre-type 1 diabetes and its association with disease progression. Diabetologia. 2014;57(5):902-908. DOI:10.1007/s00125-014-3181-4

15. Gorham ED, Garland CF, Burgi AA, et al. Lower prediagnostic serum 25-hydroxyvitamin D concentration is associated with higher risk of insulin-requiring diabetes: a nested case-control study. Diabetologia. 2012;55(12):3224-3227. DOI:10.1007/s00125-012-2709-8

16. Ikeda K, Matsumoto T, Morita K, et al. The Role of Insulin in the Stimulation of Renal 1,25-Dihydroxyvitamin D Synthesis by Parathyroid Hormone in Rats. Endocrinology. 1987;121(5):1721-1726. DOI:10.1210/endo-121-5-1721

17. Colette C, Pares-Herbute N, Monnier L, et al. Effect of different insulin administration modalities on vitamin D metabolism of insulin-dependent diabetic patients. Horm Metab Res. 1989;21(1):37-41. DOI:10.1055/s-2007-1009144

18. Pozzilli P, Manfrini S, Crino A, et al. Low levels of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 in patients with newly diagnosed type 1 diabetes. Horm Metab Res. 2005;37(11):680-683. DOI:10.1055/s-2005-870578

19. van Dijk PR, Logtenberg SJJ, Waanders F, et al. Route of Insulin Does Not Influence 25-Hydroxyvitamin D Concentrations in Type 1 Diabetes: A Brief Report. J Endocr Soc. 2019;3(8):1541-1544. DOI:10.1210/js.2019-00105

20. de Boer IH, Ioannou GN, Kestenbaum B, et al. 25-Hydroxyvitamin D levels and albuminuria in the Third National Health and Nutrition Examination Survey (NHANES III). Am J Kidney Dis. 2007;50(1):69-77. DOI:10.1053/j.ajkd.2007.04.015

21. Diaz VA, Mainous AG, 3rd, Carek PJ, et al. The association of vitamin D deficiency and insufficiency with diabetic nephropathy: implications for health disparities. J Am Board Fam Med. 2009;22(5):521-527. DOI:10.3122/jabfm.2009.05.080231

22. Thrailkill KM, Jo CH, Cockrell GE, et al. Enhanced excretion of vitamin D binding protein in type 1 diabetes: a role in vitamin D deficiency? J Clin Endocrinol Metab. 2011;96(1):142-149. DOI:10.1210/jc.2010-0980

23. Fowlkes JL, Bunn RC, Cockrell GE, et al. Dysregulation of the intrarenal vitamin D endocytic pathway in a nephropathy-prone mouse model of type 1 diabetes. Exp Diabetes Res. 2011;2011:269378. DOI:10.1155/2011/269378

24. Anderson RL, Ternes SB, Strand KA, Rowling MJ. Vitamin D homeostasis is compromised due to increased urinary excretion of the 25-hydroxycholecalciferol-vitamin D-binding protein complex in the Zucker diabetic fatty rat. Am J Physiol Endocrinol Metab. 2010;299(6):E959-967. DOI:10.1152/ajpendo.00218.2010

25. Bikle DD. Extraskeletal actions of vitamin D. Ann N Y Acad Sci. 2016;1376(1):29-52. DOI:10.1111/nyas.13219

26. Sahin OA, Goksen D, Ozpinar A, et al. Association of vitamin D receptor polymorphisms and type 1 diabetes susceptibility in children: a meta-analysis. Endocr Connect. 2017;6(3):159-171. DOI:10.1530/EC-16-0110

27. Ali R, Fawzy I, Mohsen I, Settin A. Evaluation of vitamin D receptor gene polymorphisms (Fok-I and Bsm-I) in T1DM Saudi children. J Clin Lab Anal. 2018;32(5):e22397. DOI:10.1002/jcla.22397

28. Mukhtar M, Batool A, Wajid A, Qayyum I. Vitamin D Receptor Gene Polymorphisms Influence T1D Susceptibility among Pakistanis. Int J Genomics. 2017;2017:4171254. DOI:10.1155/2017/4171254

29. Abd-Allah SH, Pasha HF, Hagrass HA, Alghobashy AA. Vitamin D status and vitamin D receptor gene polymorphisms and susceptibility to type 1 diabetes in Egyptian children. Gene. 2014;536(2):430-434. DOI:10.1016/j.gene.2013.12.032

30. Chang TJ, Lei HH, Yeh JI, et al. Vitamin D receptor gene polymorphisms influence susceptibility to type 1 diabetes mellitus in the Taiwanese population. Clin Endocrinol (Oxf). 2000;52(5):575-580. DOI:10.1046/j.1365-2265.2000.00985.x

31. Wang G, Zhang Q, Xu N, et al. Associations between two polymorphisms (FokI and BsmI) of vitamin D receptor gene and type 1 diabetes mellitus in Asian population: a meta-analysis. PLoS One. 2014;9(3):e89325. DOI:10.1371/journal.pone.0089325

32. Qin WH, Wang HX, Qiu JL, et al. A meta-analysis of association of vitamin D receptor BsmI gene polymorphism with the risk of type 1 diabetes mellitus. J Recept Signal Transduct Res. 2014;34(5):372-377. DOI:10.3109/10799893.2014.903420

33. Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21(3):319-329. DOI:10.1016/j.chembiol.2013.12.016

34. Ongagna JC, Pinget M, Belcourt A. Vitamin D-binding protein gene polymorphism association with IA-2 autoantibodies in type 1 diabetes. Clin Biochem. 2005;38(5):415-419. DOI:10.1016/j.clinbiochem.2004.12.013

35. Thorsen SU, Mortensen HB, Carstensen B, et al. No association between type 1 diabetes and genetic variation in vitamin D metabolism genes: a Danish study. Pediatr Diabetes. 2014;15(6):416-421. DOI:10.1111/pedi.12105

36. Blanton D, Han Z, Bierschenk L, et al. Reduced serum vitamin D-binding protein levels are associated with type 1 diabetes. Diabetes. 2011;60(10):2566-2570. DOI:10.2337/db11-0576

37. Bailey R, Cooper JD, Zeitels L, et al. Association of the vitamin D metabolism gene CYP27B1 with type 1 diabetes. Diabetes. 2007;56(10):2616-2621. DOI:10.2337/db07-0652

38. Cooper JD, Smyth DJ, Walker NM, et al. Inherited variation in vitamin D genes is associated with predisposition to autoimmune disease type 1 diabetes. Diabetes. 2011;60(5):1624-1631. DOI:10.2337/db10-1656

39. Hussein AG, Mohamed RH, Alghobashy AA. Synergism of CYP2R1 and CYP27B1 polymorphisms and susceptibility to type 1 diabetes in Egyptian children. Cell Immunol. 2012;279(1):42-45. DOI:10.1016/j.cellimm.2012.08.006

40. Chun RF, Liu PT, Modlin RL, et al. Impact of vitamin D on immune function: lessons learned from genome-wide analysis. Front Physiol. 2014;5:151. DOI:10.3389/fphys.2014.00151

41. Rolf L, Muris AH, Hupperts R, Damoiseaux J. Vitamin D effects on B cell function in autoimmunity. Ann N Y Acad Sci. 2014;1317:84-91. DOI:10.1111/nyas.12440

42. Tang J, Zhou R, Luger D, et al. Calcitriol suppresses antiretinal autoimmunity through inhibitory effects on the Th17 effector response. J Immunol. 2009;182(8):4624-4632. DOI:10.4049/jimmunol.0801543

43. Mahon BD, Wittke A, Weaver V, Cantorna MT. The targets of vitamin D depend on the differentiation and activation status of CD4 positive T cells. J Cell Biochem. 2003;89(5):922-932. DOI:10.1002/jcb.10580

44. Bogdanou D, Penna-Martinez M, Filmann N, et al. T-lymphocyte and glycemic status after vitamin D treatment in type 1 diabetes: A randomized controlled trial with sequential crossover. Diabetes Metab Res Rev. 2017;33(3). DOI:10.1002/dmrr.2865

45. Gabbay MA, Sato MN, Finazzo C, et al. Effect of cholecalciferol as adjunctive therapy with insulin on protective immunologic profile and decline of residual beta-cell function in new-onset type 1 diabetes mellitus. Arch Pediatr Adolesc Med. 2012;166(7):601-607. DOI:10.1001/archpediatrics.2012.164

46. Treiber G, Prietl B, Frohlich-Reiterer E, et al. Cholecalciferol supplementation improves suppressive capacity of regulatory T-cells in young patients with new-onset type 1 diabetes mellitus - A randomized clinical trial. Clin Immunol. 2015;161(2):217-224. DOI:10.1016/j.clim.2015.08.002

47. Shih EM, Mittelman S, Pitukcheewanont P, et al. Effects of vitamin D repletion on glycemic control and inflammatory cytokines in adolescents with type 1 diabetes. Pediatr Diabetes. 2016;17(1):36-43. DOI:10.1111/pedi.12238

48. Haller MJ, Wasserfall CH, Hulme MA, et al. Autologous umbilical cord blood infusion followed by oral docosahexaenoic acid and vitamin D supplementation for C-peptide preservation in children with Type 1 diabetes. Biol Blood Marrow Transplant. 2013;19(7):1126-1129. DOI:10.1016/j.bbmt.2013.04.011

49. Walter M, Kaupper T, Adler K, et al. No effect of the 1alpha,25-dihydroxyvitamin D3 on beta-cell residual function and insulin requirement in adults with new-onset type 1 diabetes. Diabetes Care. 2010;33(7):1443-1448. DOI:10.2337/dc09-2297

50. Bizzarri C, Pitocco D, Napoli N, et al. No protective effect of calcitriol on beta-cell function in recent-onset type 1 diabetes: the IMDIAB XIII trial. Diabetes Care. 2010;33(9):1962-1963. DOI:10.2337/dc10-0814

51. Pitocco D, Crino A, Di Stasio E, et al. The effects of calcitriol and nicotinamide on residual pancreatic beta-cell function in patients with recent-onset Type 1 diabetes (IMDIAB XI). Diabet Med. 2006;23(8):920-923. DOI:10.1111/j.1464-5491.2006.01921.x

52. Li X, Liao L, Yan X, et al. Protective effects of 1-alpha-hydroxyvitamin D3 on residual beta-cell function in patients with adult-onset latent autoimmune diabetes (LADA). Diabetes Metab Res Rev. 2009;25(5):411-416. DOI:10.1002/dmrr.977

53. Ataie-Jafari A, Loke SC, Rahmat AB, et al. A randomized placebo-controlled trial of alphacalcidol on the preservation of beta cell function in children with recent onset type 1 diabetes. Clin Nutr. 2013;32(6):911-917. DOI:10.1016/j.clnu.2013.01.012

54. Lamichhane AP, Crandell JL, Jaacks LM, et al. Longitudinal associations of nutritional factors with glycated hemoglobin in youth with type 1 diabetes: the SEARCH Nutrition Ancillary Study. Am J Clin Nutr. 2015;101(6):1278-1285. DOI:10.3945/ajcn.114.103747

55. Savastio S, Cadario F, Genoni G, et al. Vitamin D Deficiency and Glycemic Status in Children and Adolescents with Type 1 Diabetes Mellitus. PLoS One. 2016;11(9):e0162554. DOI:10.1371/journal.pone.0162554

56. Aljabri KS, Bokhari SA, Khan MJ. Glycemic changes after vitamin D supplementation in patients with type 1 diabetes mellitus and vitamin D deficiency. Ann Saudi Med. 2010;30(6):454-458. DOI:10.4103/0256-4947.72265

57. Hafez M, Hassan M, Musa N, et al. Vitamin D status in Egyptian children with type 1 diabetes and the role of vitamin D replacement in glycemic control. J Pediatr Endocrinol Metab. 2017;30(4):389-394. DOI:10.1515/jpem-2016-0292

58. Panjiyar RP, Dayal D, Attri SV, et al. Sustained serum 25-hydroxyvitamin D concentrations for one year with cholecalciferol supplementation improves glycaemic control and slows the decline of residual beta cell function in children with type 1 diabetes. Pediatr Endocrinol Diabetes Metab. 2018;2018(3):111-117. DOI:10.5114/pedm.2018.80992

59. Ordooei M, Shojaoddiny-Ardekani A, Hoseinipoor SH, et al. Effect of vitamin D on HbA1c levels of children and adolescents with diabetes mellitus type 1. Minerva Pediatr. 2017;69(5):391-395. DOI:10.23736/S0026-4946.16.04145-1

60. Nwosu BU, Maranda L. The effects of vitamin D supplementation on hepatic dysfunction, vitamin D status, and glycemic control in children and adolescents with vitamin D deficiency and either type 1 or type 2 diabetes mellitus. PLoS One. 2014;9(6):e99646. DOI:10.1371/journal.pone.0099646


Supplementary files

Review

For citations:


Povaliaeva A.A., Pigarova E.A., Dzeranova L.K., Rozhinskaya L.Ya. The relationship of vitamin D status with the development and course of diabetes mellitus type 1. Obesity and metabolism. 2020;17(1):82-87. (In Russ.) https://doi.org/10.14341/omet12206

Views: 9418


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)