Cognitive function and metabolic features in male Sprague-Dawley rats receiving high-fat and low-calorie diets
https://doi.org/10.14341/omet10022
Abstract
Background: Obesity is a risk factor for cognitive disorders. However, it is still unknown whether low-calorie diet will improve cognitive function in obese patients.
Aim: To evaluate cognitive function and metabolic features in male Sprague-Dawley rats receiving high-fat and low-calorie diets.
Materials and methods: The work was carried out on Sprague Dawley male rats (n = 32), which were divided into 2 groups with 16 animals in each group: Control (normal / low-calorie diet) and Obesity (high-fat diet). In 90 days the rats of the Control group were transferred to a low-calorie diet, the rats of the Obesity group continued to receive high-fat diet. To assess motor activity and cognitive functions at the end of the study (180 days), following behavioral tests were conducted: "open field", "tapering beam", "elevated plus-maze" (EPM) and "passive avoidance reaction". During the study glucose tolerance test were performed: at baseline (GTT 1) and in 30 days (GTT 2).
Results: Obesity group rats gained weight significantly faster than the control animals (547.69 ± 11.32 g against 442.8 ± 19.8 g at study end, p = 0.0001). GTT 2 showed normal carbohydrate metabolism in control group, postprandial hyperglycemia in obesity group. Testing in the open field showed that the rats of the obesity group moved more actively across the installation area than the control ones: the total distance covered was 9.352 ± 0.932 m against 6.781 ± 0.951 m, p = 0.046.
The results of a tapering beam test showed that the number of hind limb extrusions in obese rats significantly exceeded this parameter in control group (33.7 ± 3 vs. 15.7 ± 2.7, p = 0.0001), test time in both groups did not differ.
When testing in EPM, there was no significant difference in any of the key test parameters between the groups. However, the number of looking out from the closed arms in animals of the obesity group was significantly higher than in the control group (4.19 ± 0.6 vs. 2.30 ± 0.58, p = 0.044). When testing the reproduction of conditional reactions of passive avoidance it was shown that after day 1 of the pain stimulation application the latent period of transition to the dark compartment in the obesity group was significantly higher than that of the control group (180.0 ± 0.0 vs. 128 86 ± 21.45, p = 0.008). This indicates a better preservation of the memorial trail compared to the "control" rats. By the end of the study 30% of animals in the control group died.
Conclusions: Rats on high-fat diet were more active, less anxious and showed better results in training tests comparing to animals on low-calorie diet. Adherence to low-calorie diet may be harmful for cognitive functions.
About the Authors
Ekaterina A. ShestakovaEndocrinology Research Centre
Russian Federation
PhD, leading research associate
Alla V. Stavrovskaya
Research Center of Neurology
Russian Federation
PhD in Biology, leading research associate
Anastasiya S. Gushchina
Research Center of Neurology
Russian Federation
research associate
Nina G. Yamshikova
Research Center of Neurology
Russian Federation
PhD in Biology, leading research associate
Artyom S. Olshansky
Research Center of Neurology
Russian Federation
PhD in Biology, senior research associate
References
1. gks.ru [интернет]. Демография [доступ от 03.12.2018]. Доступ по ссылке: http://www.gks.ru/wps/wcm/connect/rosstat_main/rosstat/ru/statistics/population/demography/
2. Prince M, Wimo A, Guerchet M, Ali G, et al. World Alzheimer Report 2015 – The Global Impact of dementia. An analysis of prevalence, incidence, costs and trends. [Internet]. London: Alzheimer’s Disease International (ADI); 2015 [cited 2017 Jan 30]. Available from: https://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf
3. who.int [интернет]. Ожирение и избыточный вес [доступ от 03.12.2018]. Доступ по ссылке: http://www.who.int/ru/news-room/fact-sheets/detail/obesity-and-overweight.
4. International Diabetes Federation. IDF Diabetes Atlas, 8th edn. Brussels, Belgium: International Diabetes Federation, 2017. Available from: http://www.diabetesatlas.org. Accessed 13 Nov 2017.
5. Whitmer RA, Gunderson EP, Barrett-Connor E, et al. Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study. BMJ. 2005;330(7504):1360–1362. doi: 10.1136/bmj.38446.466238.E0
6. Остроумова О.Д., Суркова Е.В., Ших Е.В., и др. Когнитивные нарушения у больных сахарным диабетом 2 типа: распространенность, патогенетические механизмы, влияние противодиабетических препаратов // Сахарный диабет. – 2018. – Т. 21. – №4. – C. 307-318. [Ostroumova OD, Surkova EV, Chikh EV, et al. Cognitive impairment in patients with type 2 diabetes mellitus: prevalence, pathogenetic mechanisms, the effect of antidiabetic drugs. Diabetes mellitus. 2018;21(4):307-318. (In Russ.)] doi: 10.14341/DM9660
7. Дедов И.И., Шестакова М.В., Майоров А.Ю., и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. / Под ред. Дедова И.И., Шестаковой М.В., Майорова А.Ю. – 8-й выпуск // Сахарный диабет. – 2017. – Т. 20. – №1S. – C. 1-121. [Dedov II, Shestakova MV, Mayorov AY, et al. Standards of specialized diabetes care. Dedov II, Shestakova MV, Mayorov AY, editors. 8th edition. Diabetes mellitus. 2017;20(1S):1-121. (In Russ.)] doi: 10.14341/DM20171S8
8. Apovian CM, Aronne LJ, Bessesen DH, et al. Pharmacological Management of Obesity: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2015;100(2):342–362. doi: 10.1210/jc.2014-3415
9. Steven S, Hollingsworth KG, Al-Mrabeh A, et al. Very Low-Calorie Diet and 6 Months of Weight Stability in Type 2 Diabetes: Pathophysiological Changes in Responders and Nonresponders. Diabetes Care. 2016;39(5):808-815. doi: 10.2337/dc15-1942
10. who.int [интернет]. Неинфекционные заболевания [доступ от 03.12.2018]. Доступ по ссылке: http://www.who.int/ru/news-room/fact-sheets/detail/noncommunicable-diseases
11. Prince M, Bryce R, Albanese E, et al. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimer’s Dement. 2013;9(1):63-75.e2. doi: 10.1016/j.jalz.2012.11.007
12. Дедов И.И., Мельниченко Г.А., Шестакова М.В., и др. Национальные клинические рекомендации по лечению морбидного ожирения у взрослых. 3-ий пересмотр (лечение морбидного ожирения у взрослых) // Ожирение и метаболизм. – 2018. – Т. 15. – №1. – C. 53-70. [Dedov II, Mel’nichenko GA, Shestakova M V, et al. Russian national clinical recommendations for morbid obesity treatment in adults. 3rd revision (Morbid obesity treatment in adults).Obesity and metabolism. 2018;15(1):53-70. (In Russ.)] doi: 10.14341/OMET2018153-70
13. Petersson SD, Philippou E. Mediterranean Diet, Cognitive Function, and Dementia: A Systematic Review of the Evidence. Adv Nutr. 2016;7(5):889-904. doi: 10.3945/an.116.012138
14. Dye L, Boyle NB, Champ C, Lawton C. The relationship between obesity and cognitive health and decline. Proc Nutr Soc. 2017;76(4):443-454. doi: 10.1017/S0029665117002014
15. Luine V, Gomez J, Beck K, Bowman R. Sex differences in chronic stress effects on cognition in rodents. Pharmacol Biochem Behav. 2017;152:13-19. doi: 10.1016/j.pbb.2016.08.005
16. Prickett C, Brennan L, Stolwyk R. Examining the relationship between obesity and cognitive function: a systematic literature review. Obes Res Clin Pract. 2015;9(2):93-113. doi: 10.1016/j.orcp.2014.05.001
17. Malafaia G, da Silva WAM, Mendes BO, et al. The Cognitive Function Of Wistar Rats Subjected To Cafeteria Diet And To Chronic Stress. J Obes Eat Disord. 2016;2(1):12. doi: 10.21767/2471-8203.100012
18. Luine V. Estradiol: Mediator of memories, spine density and cognitive resilience to stress in female rodents. J Steroid Biochem Mol Biol. 2015;160:189-95. doi: 10.1016/j.jsbmb.2015.07.022
19. Wahl D, Solon-Biet SM, Wang Q-P, et al. Comparing the Effects of Low-Protein and High-Carbohydrate Diets and Caloric Restriction on Brain Aging in Mice. Cell Rep. 2018;25(8): 2234–2243. doi: 10.1016/j.celrep.2018.10.070
20. Martin CK, Anton SD, Han H, et al. Examination of cognitive function during six months of calorie restriction: results of a randomized controlled trial. Rejuvenation Res. 2007;10(2):179-190. doi: 10.1089/rej.2006.0502
21. Sarrar L, Holzhausen M, Warschburger P, et al. Cognitive Function in Adolescent Patients with Anorexia Nervosa and Unipolar Affective Disorders. Eur Eat Disord Rev. 2016;24(3):232-240. doi: 10.1002/erv.2425
22. Luchsinger JA, Patel B, Tang MX, et al. Measures of adiposity and dementia risk in elderly persons. Arch Neurol. 2007;64(3):392-398. doi: 10.1001/archneur.64.3.392
Supplementary files
|
1. Fig. 1. Design research. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(157KB)
|
Indexing metadata ▾ |
|
2. Fig. 2. Dynamics of weight changes in experimental animals. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(76KB)
|
Indexing metadata ▾ |
|
3. Fig. 3. The latent period of the transition from the bright compartment of the camera passive avoidance reaction in the dark. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(91KB)
|
Indexing metadata ▾ |
|
4. Fig. 4. Results of glucose tolerance test 1 before the start of the diet. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(100KB)
|
Indexing metadata ▾ |
|
5. Fig. 5. Results of glucose tolerance test 2 30 days after the start of the diet. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(112KB)
|
Indexing metadata ▾ |
Review
For citations:
Shestakova E.A., Stavrovskaya A.V., Gushchina A.S., Yamshikova N.G., Olshansky A.S. Cognitive function and metabolic features in male Sprague-Dawley rats receiving high-fat and low-calorie diets. Obesity and metabolism. 2018;15(4):65-73. (In Russ.) https://doi.org/10.14341/omet10022

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).