Preview

Obesity and metabolism

Advanced search

A look at new therapeutic opportunities in patients with non-alcoholic fatty liver disease

https://doi.org/10.14341/omet9986

Abstract

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide, and is considered to be the liver manifestation of metabolic syndrome. Currently, there is no etiotropic treatment of NAFLD, so an active research for new methods of treatment is underway. In the meantime, drugs are used to treat comorbid conditions, such as dyslipidemia, arterial hypertension, obesity, type 2 diabetes, which are present in varying degrees in patients. This review considers medications that are used in patients with NAFLD and related concomitant features, and also describes new strategies for regressing changes in liver tissue in NAFLD. In our opinion, one of the promising groups of drugs are agonists of the farnesoid X receptor (FXR). FXR belongs to the group of nuclear receptors, which are ligand-activated transcription factors that regulate the genes involved in metabolism. FXR agonists can claim to be a new promising drug for the treatment of NAFLD and related diseases influencing carbohydrate metabolism, fat metabolism, bile acid metabolism, as well as inflammatory processes in the liver to ensure metabolic homeostasis.

About the Authors

Ekaterina E. Mishina
Endocrinology Research Centre
Russian Federation

MD, PhDstudent, research associate



Alexander Y. Mayorov
Endocrinology Research Centre
Russian Federation

MD, PhD



Apollinariya V. Bogolyubova
Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences
Russian Federation

junior research associate



Pavel O. Bogomolov
M.F. Vladimirskiy Moscow Regional Research and Clinical Institute
Russian Federation

MD, PhD



Maria V. Matsievich
M.F. Vladimirskiy Moscow Regional Research and Clinical Institute
Russian Federation

MD, PhD



Ksenia Y. Kokina
M.F. Vladimirskiy Moscow Regional Research and Clinical Institute
Russian Federation

MD



References

1. Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73-84. DOI:10.1002/hep.28431

2. Wong RJ, Aguilar M, Cheung R, et al. Nonalcoholic Steatohepatitis Is the Second Leading Etiology of Liver Disease Among Adults Awaiting Liver Transplantation in the United States. Gastroenterology. 2015;148(3):547-555. DOI:10.1053/j.gastro.2014.11.039

3. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328-357. DOI:10.1002/hep.29367

4. Oseini AM, Sanyal AJ. Therapies in non-alcoholic steatohepatitis (NASH). Liver Int. 2017;37(1):97-103. DOI:10.1111/liv.13302

5. Neuschwander-Tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: The central role of nontriglyceride fatty acid metabolites. Hepatology. 2010;52(2):774-788. DOI:10.1002/hep.23719

6. Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, et al. Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroenterology. 2015;149(2):367-378.e5. DOI:10.1053/j.gastro.2015.04.005

7. Angulo P, Kleiner DE, Dam-Larsen S, et al. Liver Fibrosis, but No Other Histologic Features, Is Associated With Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology. 2015;149(2):389-397.e10. DOI:10.1053/j.gastro.2015.04.043

8. Tziomalos K, Athyros VG, Paschos P, Karagiannis A. Nonalcoholic fatty liver disease and statins. Metabolism. 2015;64(10):1215-1223. DOI:10.1016/j.metabol.2015.07.003

9. Musso G, Gambino R, Cassader M, Pagano G. A meta-analysis of randomized trials for the treatment of nonalcoholic fatty liver disease. Hepatology. 2010;52(1):79-104. DOI:10.1002/hep.23623

10. Jain MR, Giri SR, Bhoi B, et al. Dual PPARα/γ agonist saroglitazar improves liver histopathology and biochemistry in experimental NASH models. Liver Int. 2018;38(6):1084-1094. DOI:10.1111/liv.13634

11. Chatterjee S, Majumder A, Ray S. Observational Study of Effects of Saroglitazar on Glycaemic and Lipid Parameters on Indian Patients with Type 2 Diabetes. Sci Rep. 2015;5(1):7706. DOI:10.1038/srep07706

12. Watanabe K, Ueno M, Kamiya D, et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 2007;25(6):681-686. DOI:10.1038/nbt1310

13. Dasarathy S, Dasarathy J, Khiyami A, et al. Double-blind Randomized Placebo-controlled Clinical Trial of Omega 3 Fatty Acids for the Treatment of Diabetic Patients With Nonalcoholic Steatohepatitis. J Clin Gastroenterol. 2015;49(2):137-144. DOI:10.1097/MCG.0000000000000099

14. Byrne CD, Targher G. NAFLD: A multisystem disease. J Hepatol. 2015;62(1):S47-S64. DOI:10.1016/j.jhep.2014.12.012

15. Sumida Y, Seko Y, Yoneda M. Novel antidiabetic medications for non-alcoholic fatty liver disease with type 2 diabetes mellitus. Hepatol Res. 2017;47(4):266-280. DOI:10.1111/hepr.12856

16. Ding X, Saxena NK, Lin S, Gupta N, Anania FA. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis inob/ob mice. Hepatology. 2006;43(1):173-181. DOI:10.1002/hep.21006

17. Mells JE, Fu PP, Sharma S, et al. Glp-1 analog, liraglutide, ameliorates hepatic steatosis and cardiac hypertrophy in C57BL/6J mice fed a Western diet. Am J Physiol Liver Physiol. 2012;302(2):G225-G235. DOI:10.1152/ajpgi.00274.2011

18. Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. 2016;387(10019):679-690. DOI:10.1016/S0140-6736(15)00803-X

19. Marso SP, Bain SC, Consoli A, et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2016;375(19):1834-1844. DOI:10.1056/NEJMoa1607141

20. Jones B. Liraglutide and cardiovascular outcomes in type 2 diabetes. Ann Clin Biochem. 2016;53(6):712-712. DOI:10.1177/0004563216663075

21. Joy TR, McKenzie CA, Tirona RG, et al. Sitagliptin in patients with non-alcoholic steatohepatitis: A randomized, placebo-controlled trial. World J Gastroenterol. 2017;23(1):141. DOI:10.3748/wjg.v23.i1.141

22. Yilmaz Y, Yonal O, Deyneli O, et al. Effects of sitagliptin in diabetic patients with nonalcoholic steatohepatitis. Acta Gastroenterol Belg. 2012;75(2):240-244. PMID: 22870790

23. Fitchett D, Zinman B, Wanner C, et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME ® trial. Eur Heart J. 2016;37(19):1526-1534. DOI:10.1093/eurheartj/ehv728

24. Qiang S, Nakatsu Y, Seno Y, et al. Treatment with the SGLT2 inhibitor luseogliflozin improves nonalcoholic steatohepatitis in a rodent model with diabetes mellitus. Diabetol Metab Syndr. 2015;7(1):104. DOI:10.1186/s13098-015-0102-8

25. Honda Y, Imajo K, Kato T, et al. The Selective SGLT2 Inhibitor Ipragliflozin Has a Therapeutic Effect on Nonalcoholic Steatohepatitis in Mice. PLoS One. 2016;11(1):e0146337. DOI:10.1371/journal.pone.0146337

26. Gautam A, Agrawal PK, Doneria J, Nigam A. Effects of Canagliflozin on Abnormal Liver Function Tests in Patients of Type 2 Diabetes with Non-Alcoholic Fatty Liver Disease. J Assoc Physicians India. 2018;66(8):62-66. PMID: 31324087

27. Boettcher E, Csako G, Pucino F, et al. Meta-analysis: pioglitazone improves liver histology and fibrosis in patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2012;35(1):66-75. DOI:10.1111/j.1365-2036.2011.04912.x

28. Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and Risk of Cardiovascular Events in Patients With Type 2 Diabetes Mellitus. JAMA. 2007;298(10):1180. DOI:10.1001/jama.298.10.1180

29. Chalasani NP, Sanyal AJ, Kowdley KV., et al. Pioglitazone versus vitamin E versus placebo for the treatment of non-diabetic patients with non-alcoholic steatohepatitis: PIVENS trial design. Contemp Clin Trials. 2009;30(1):88-96. DOI:10.1016/j.cct.2008.09.003

30. Mahady SE, Webster AC, Walker S, et al. The role of thiazolidinediones in non-alcoholic steatohepatitis – A systematic review and meta analysis.. J Hepatol. 2011;55(6):1383-1390. DOI:10.1016/j.jhep.2011.03.016

31. Piccinni C, Motola D, Marchesini G, Poluzzi E. Assessing the Association of Pioglitazone Use and Bladder Cancer Through Drug Adverse Event Reporting. Diabetes Care. 2011;34(6):1369-1371. DOI:10.2337/dc10-2412

32. Tuccori M, Filion KB, Yin H, et al. Pioglitazone use and risk of bladder cancer: population based cohort study. BMJ. 2016;34(6):i1541. DOI:10.1136/bmj.i1541

33. Lecka-Czernik B. Bone Loss in Diabetes: Use of Antidiabetic Thiazolidinediones and Secondary Osteoporosis. Curr Osteoporos Rep. 2010;8(4):178-184. DOI:10.1007/s11914-010-0027-y

34. EASL–EASD–EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64(6):1388-1402. DOI:10.1016/j.jhep.2015.11.004

35. Chan JM, Darke AK, Penney KL, et al. Selenium- or Vitamin E-Related Gene Variants, Interaction with Supplementation, and Risk of High-Grade Prostate Cancer in SELECT. Cancer Epidemiol Biomarkers Prev. 2016;25(7):1050-1058. DOI:10.1158/1055-9965.EPI-16-0104

36. Schurks M, Glynn RJ, Rist PM, et al. Effects of vitamin E on stroke subtypes: meta-analysis of randomised controlled trials. BMJ. 2010;341:c5702. DOI:10.1136/bmj.c5702

37. Staels B, Rubenstrunk A, Noel B, et al. Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology. 2013;58(6):1941-1952. DOI:10.1002/hep.26461

38. Newsome PN. Entering the GOLDEN Age for Therapies in NASH. Gastroenterology. 2016;150(5):1073-1076. DOI:10.1053/j.gastro.2016.03.014

39. Colca JR, VanderLugt JT, Adams WJ, et al. Clinical Proof-of-Concept Study With MSDC-0160, a Prototype mTOT-Modulating Insulin Sensitizer. Clin Pharmacol Ther. 2013;93(4):352-359. DOI:10.1038/clpt.2013.10

40. McCommis KS, Hodges WT, Brunt EM, et al. Targeting the mitochondrial pyruvate carrier attenuates fibrosis in a mouse model of nonalcoholic steatohepatitis. Hepatology. 2017;65(5):1543-1556. DOI:10.1002/hep.29025

41. Townsend SA, Newsome PN. Review article: new treatments in non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2017;46(5):494-507. DOI:10.1111/apt.14210

42. Tacke F. Cenicriviroc for the treatment of non-alcoholic steatohepatitis and liver fibrosis. Expert Opin Investig Drugs. 2018;27(3):301-311. DOI:10.1080/13543784.2018.1442436

43. Friedman S, Sanyal A, Goodman Z, et al. Efficacy and safety study of cenicriviroc for the treatment of non-alcoholic steatohepatitis in adult subjects with liver fibrosis: CENTAUR Phase 2b study design. Contemp Clin Trials. 2016;47(3):356-365. DOI:10.1016/j.cct.2016.02.012

44. Barreyro FJ, Holod S, Finocchietto P V., et al. The pan-caspase inhibitor Emricasan (IDN-6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis. Liver Int. 2015;35(3):953-966. DOI:10.1111/liv.12570

45. Safadi R, Konikoff FM, Mahamid M, et al. The Fatty Acid–Bile Acid Conjugate Aramchol Reduces Liver Fat Content in Patients With Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol. 2014;12(12):2085-2091.e1. DOI:10.1016/j.cgh.2014.04.038

46. Ekstedt M, Hagström H, Nasr P, et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology. 2015;61(5):1547-1554. DOI:10.1002/hep.27368

47. Barry-Hamilton V, Spangler R, Marshall D, et al. Allosteric inhibition of lysyl oxidase–like-2 impedes the development of a pathologic microenvironment. Nat Med. 2010;16(9):1009-1017. DOI:10.1038/nm.2208

48. Harrison SA, Abdelmalek MF, Caldwell S, et al. Simtuzumab Is Ineffective for Patients With Bridging Fibrosis or Compensated Cirrhosis Caused by Nonalcoholic Steatohepatitis. Gastroenterology. 2018;155(4):1140-1153. DOI:10.1053/j.gastro.2018.07.006

49. Budas G, Karnik S, Jonnson T, et al. Reduction of Liver Steatosis and Fibrosis with an Ask1 Inhibitor in a Murine Model of Nash is Accompanied by Improvements in Cholesterol, Bile Acid and Lipid Metabolism. J Hepatol. 2016;64(2):S170. DOI:10.1016/S0168-8278(16)01686-X

50. Loomba R, Lawitz E, Mantry PS, et al. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: A randomized, phase 2 trial. Hepatology. 2018;67(2):549-559. DOI:10.1002/hep.29514

51. Compare D, Coccoli P, Rocco A, et al. Gut–liver axis: The impact of gut microbiota on non alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 2012;22(6):471-476. DOI:10.1016/j.numecd.2012.02.007

52. Kim S-G, Kim B-K, Kim K, Fang S. Bile Acid Nuclear Receptor Farnesoid X Receptor: Therapeutic Target for Nonalcoholic Fatty Liver Disease. Endocrinol Metab. 2016;31(4):500. DOI:10.3803/EnM.2016.31.4.500

53. Makishima M. Identification of a Nuclear Receptor for Bile Acids. Science (80- ). 1999;284(5418):1362-1365. DOI:10.1126/science.284.5418.1362

54. Chiang JYL. Bile Acid Regulation of Gene Expression: Roles of Nuclear Hormone Receptors. Endocr Rev. 2002;23(4):443-463. DOI:10.1210/er.2000-0035

55. Allen K, Jaeschke H, Copple BL. Bile Acids Induce Inflammatory Genes in Hepatocytes. Am J Pathol. 2011;178(1):175-186. DOI:10.1016/j.ajpath.2010.11.026

56. Claudel T, Staels B, Kuipers F. The Farnesoid X Receptor. Arterioscler Thromb Vasc Biol. 2005;25(10):2020-2030. DOI:10.1161/01.ATV.0000178994.21828.a7

57. De Fabiani E, Mitro N, Gilardi F, Caruso D, Galli G, Crestani M. Coordinated Control of Cholesterol Catabolism to Bile Acids and of Gluconeogenesis via a Novel Mechanism of Transcription Regulation Linked to the Fasted-to-fed Cycle. J Biol Chem. 2003;278(40):39124-39132. DOI:10.1074/jbc.M305079200

58. Stayrook KR, Bramlett KS, Savkur RS, et al. Regulation of Carbohydrate Metabolism by the Farnesoid X Receptor. Endocrinology. 2005;146(3):984-991. DOI:10.1210/en.2004-0965

59. Ma K. Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest. 2006;116(4):1102-1109. DOI:10.1172/JCI25604

60. Duran-Sandoval D, Mautino G, Martin G, et al. Glucose Regulates the Expression of the Farnesoid X Receptor in Liver. Diabetes. 2004;53(4):890-898. DOI:10.2337/diabetes.53.4.890

61. Zhang Y, Lee FY, Barrera G, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci. 2006;103(4):1006-1011. DOI:10.1073/pnas.0506982103

62. Cariou B, van Harmelen K, Duran-Sandoval D, et al. The Farnesoid X Receptor Modulates Adiposity and Peripheral Insulin Sensitivity in Mice. J Biol Chem. 2006;281(16):11039-11049. DOI:10.1074/jbc.M510258200

63. Jiao Y, Lu Y, Li X. Farnesoid X receptor: a master regulator of hepatic triglyceride and glucose homeostasis. Acta Pharmacol Sin. 2015;36(1):44-50. DOI:10.1038/aps.2014.116

64. Cyphert HA, Ge X, Kohan AB, et al. Activation of the Farnesoid X Receptor Induces Hepatic Expression and Secretion of Fibroblast Growth Factor 21. J Biol Chem. 2012;287(30):25123-25138. DOI:10.1074/jbc.M112.375907

65. Ryan KK, Tremaroli V, Clemmensen C, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014;509(7499):183-188. DOI:10.1038/nature13135

66. Trauner M, Claudel T, Fickert P, et al. Bile Acids as Regulators of Hepatic Lipid and Glucose Metabolism. Dig Dis. 2010;28(1):220-224. DOI:10.1159/000282091

67. Jiang ZG, Robson SC, Yao Z. Lipoprotein metabolism in nonalcoholic fatty liver disease. J Biomed Res. 2013;27(1):1-13.

68. Li X, Li Y, Yang W, et al. SREBP-1c overexpression induces triglycerides accumulation through increasing lipid synthesis and decreasing lipid oxidation and VLDL assembly in bovine hepatocytes. J Steroid Biochem Mol Biol. 2014;143(1):174-182. DOI:10.1016/j.jsbmb.2014.02.009

69. Lambert G, Amar MJA, Guo G, et al. The Farnesoid X-receptor Is an Essential Regulator of Cholesterol Homeostasis. J Biol Chem. 2003;278(4):2563-2570. DOI:10.1074/jbc.M209525200

70. Seo JA, Kim NH. Fibroblast Growth Factor 21: A Novel Metabolic Regulator. Diabetes Metab J. 2012;36(1):26. DOI:10.4093/dmj.2012.36.1.26

71. Yao J. FXR agonist GW4064 alleviates endotoxin-induced hepatic inflammation by repressing macrophage activation. World J Gastroenterol. 2014;20(39):14430. DOI:10.3748/wjg.v20.i39.14430

72. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385(9972):956-965. DOI:10.1016/S0140-6736(14)61933-4

73. Mudaliar S, Henry RR, Sanyal AJ, et al. Efficacy and Safety of the Farnesoid X Receptor Agonist Obeticholic Acid in Patients With Type 2 Diabetes and Nonalcoholic Fatty Liver Disease. Gastroenterology. 2013;145(3):574-582.e1. DOI:10.1053/j.gastro.2013.05.042

74. Singh AB, Dong B, Kraemer FB, et al. Farnesoid X Receptor Activation by Obeticholic Acid Elevates Liver Low-Density Lipoprotein Receptor Expression by mRNA Stabilization and Reduces Plasma Low-Density Lipoprotein Cholesterol in Mice. Arterioscler Thromb Vasc Biol. 2018;38(10):2448-2459. DOI:10.1161/ATVBAHA.118.311122


Review

For citations:


Mishina E.E., Mayorov A.Y., Bogolyubova A.V., Bogomolov P.O., Matsievich M.V., Kokina K.Y. A look at new therapeutic opportunities in patients with non-alcoholic fatty liver disease. Obesity and metabolism. 2019;16(3):37-45. (In Russ.) https://doi.org/10.14341/omet9986

Views: 2554


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)