Vitamin D binding protein polymorphysm in patients with acute coronary syndrome in kaliningrad region
https://doi.org/10.14341/omet9758
Abstract
BACKGROUND: Vitamin D binding protein is a main vitamin D carrier in serum. It also has an impact on macrophagial function. Role of vitamin D and macrophages in the pathogenesis of atherosclerosis is scientifically proven but there is lack of data on vitamin D binding protein in this regard.
AIMS: To evaluate the vitamin D binding protein polymorphism in patients with acute coronary syndrome without diabetes mellitus, autoimmune diseases and malignant tumors. Determine correlation, if there is, between vitamin D binding protein allele and features of acute coronary syndrome among this patient group.
MATERIALS AND METHODS: It is a cross-sectional observational study. Study subjects are patients with acute coronary syndrome. Exclusion criteria are the presence of diabetes mellitus, autoimmune diseases and malignant tumors. In all participants were evaluated: predisposing factors for heart diseases, CBC, biochemical blood test, troponin, coronarography, echocardiography. The study lasted for 5 months from November 2017 until March 2018. Primary end point – assessment of vitamin D binding protein polymorphysm in this group of patients with acute coronary syndrome by means of vitamin D binding protein gene sequencing. 50 patients were enrolled into this study who were urgently admitted to hospital and diagnosed with acute coronary syndrome. Among them – 36 males and 14 females. Mean age was 60 (55;66) years. All participants were sequenced for single nucleotide polymorphysm in VDBP p.T436K (rs4588) and P.432E (rs7041).
RESULTS: Gene polymorphysms of interest were found in 43 patients among 50 enrolled. Haplotype Gc1s/2 (rs7041G-rs4588A) was found in 7 (14%) patients, Gc2 (rs7041T-rs4588A) — in 9 (18%) patients, Gc1s (rs7041G-rs4588C) – in 20 (40%) patients, Gc1f (rs7041T-rs4588C) in 14 (28%). Coronarography showed that coronary artery occlusions obstructing more than 50% of vessel lumen was found in 16 patients; obstruction greater than 90% was seen in 8 patients; total occlusion – in 4 patients.
CONCLUSIONS: In patient group with acute coronary syndrome prevalence of vitamin D binding protein gene polymorphysm was high – in 86% of participants. The features of Gc2 haplotype were higher frequency of recurrent myocardial infarction and total coronary artery occlusion, as well as tendency to decreased serum vitamin D3 (25(OH)D) levels.
Keywords
About the Authors
Robert S. BogachevRussian Federation
MD, PhD, professor
Anastasia Y. Kozel
Russian Federation
student
Larisa S. Litvinova
Russian Federation
MD, PhD
Larisa V. Mikhailova
Russian Federation
MD, PhD, associate professor
Elena S. Shytova
Russian Federation
MD, PhD
Vitaly B. Ankudоvich
Russian Federation
student
Vladislav V. Mordvintsev
Russian Federation
student
Ulyana A. Dobrynina
Russian Federation
student
References
1. Hutchinson MS, Grimnes G, Joakimsen RM, et al. Low serum 25-hydroxyvitamin D levels are associated with increased all-cause mortality risk in a general population: the Tromsø study. Eur J Endocrinol. 2010;162(5):935-942. DOI:10.1530/EJE-09-1041
2. Liu L, Chen M, Hankins SR, et al. Serum 25-Hydroxyvitamin D Concentration and Mortality from Heart Failure and Cardiovascular Disease, and Premature Mortality from All-Cause in United States Adults. Am J Cardiol. 2012;110(6):834-839. DOI:10.1016/j.amjcard.2012.05.013
3. de Boer IH. Serum 25-Hydroxyvitamin D Concentration and Risk for Major Clinical Disease Events in a Community-Based Population of Older Adults. Ann Intern Med. 2012;156(9):627. DOI:10.7326/0003-4819-156-9-201205010-00004
4. Kestenbaum B, Katz R, de Boer I, et al. Vitamin D, Parathyroid Hormone, and Cardiovascular Events Among Older Adults. J Am Coll Cardiol. 2011;58(14):1433-1441. DOI:10.1016/j.jacc.2011.03.069
5. Melamed ML, Michos ED, Post W, Astor B. 25-Hydroxyvitamin D Levels and the Risk of Mortality in the General Population. Arch Intern Med. 2008;168(15):1629-1637. DOI:10.1001/archinte.168.15.1629
6. Dobnig H. Independent Association of Low Serum 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D Levels With All-Cause and Cardiovascular Mortality. Arch Intern Med. 2008;168(12):1340-1349. DOI:10.1001/archinte.168.12.1340
7. Robinson-Cohen C, Hoofnagle AN, Ix JH, et al. Racial Differences in the Association of Serum 25-Hydroxyvitamin D Concentration With Coronary Heart Disease Events. JAMA. 2013;310(2):179. DOI:10.1001/jama.2013.7228
8. Geovanini GR, Libby P. Atherosclerosis and inflammation: overview and updates. Clin Sci. 2018;132(12):1243-1252. DOI:10.1042/CS20180306
9. Agrawal D, Yin K. Vitamin D and inflammatory diseases. J Inflamm Res. May 2014:69. DOI:10.2147/JIR.S63898
10. Kassi E, Adamopoulos C, Basdra EK, Papavassiliou AG. Role of Vitamin D in Atherosclerosis. Circulation. 2013;128(23):2517-2531. DOI:10.1161/CIRCULATIONAHA.113.002654
11. Li YC. Vitamin D regulation of the renin-angiotensin system. J Cell Biochem. 2003;88(2):327-331. DOI:10.1002/jcb.10343
12. Bikle DD, Siiteri PK, Ryzen E, et al. Serum Protein Binding of 1,25-Dihydroxyvitamin D: A Reevaluation by Direct Measurement of Free Metabolite Levels*. J Clin Endocrinol Metab. 1985;61(5):969-975. DOI:10.1210/jcem-61-5-969
13. Safadi FF, Thornton P, Magiera H, et al. Osteopathy and resistance to vitamin D toxicity in mice null for vitamin D binding protein. J Clin Invest. 1999;103(2):239-251. DOI:10.1172/JCI5244
14. Bikle DD, Gee E. Free, and Not Total, 1,25-Dihydroxyvitamin D Regulates 25-Hydroxyvitamin D Metabolism by Keratinocytes. Endocrinology. 1989;124(2):649-654. DOI:10.1210/endo-124-2-649
15. Mc Leod JF, Kowalski MA, Haddad JG. Interactions among serum vitamin D binding protein, monomeric actin, profilin, and profilactin. J Biol Chem. 1989;264(2):1260-1267. PMID: 2910852
16. Williams MH, Van Alstyne EL, Galbraith RM. Evidence of a novel association of unsaturated fatty acids with Gc (Vitamin D-binding protein). Biochem Biophys Res Commun. 1988;153(3):1019-1024. DOI:10.1016/S0006-291X(88)81330-5
17. Nagasawa H, Uto Y, Sasaki H, et al. Gc protein (vitamin D-binding protein): Gc genotyping and GcMAF precursor activity. Anticancer Res. 2005;25(6A):3689-3695. PMID: 16302727
18. Wood AM, Bassford C, Webster D, et al. Vitamin D-binding protein contributes to COPD by activation of alveolar macrophages. Thorax. 2011;66(3):205-210. DOI:10.1136/thx.2010.140921
19. Martineau AR, Leandro ACCS, Anderson ST, et al. Association between Gc genotype and susceptibility to TB is dependent on vitamin D status. Eur Respir J. 2010;35(5):1106-1112. DOI:10.1183/09031936.00087009
20. Cleve H, Constans J. The Mutants of the Vitamin-D-Binding Protein: More than 120 Variants of the GC/DBP System. Vox Sang. 1988;54(4):215-225. DOI:10.1111/j.1423-0410.1988.tb03908.x
21. Arnaud J, Constans J. Affinity differences for vitamin D metabolites associated with the genetic isoforms of the human serum carrier protein (DBP). Hum Genet. 1993;92(2). DOI:10.1007/BF00219689
22. Пигарова Е.А., Рожинская Л.Я., Белая Ж.Е., и др. Клинические рекомендации Российской ассоциации эндокринологов по диагностике, лечению и профилактике дефицита витамина D у взрослых // Проблемы Эндокринологии. - 2016. - Т. 62. - №4. - C. 60-84. [Pigarova EA, Rozhinskaya LY, Belaya JE, et al. Russian Association of Endocrinologists recommendations for diagnosis, treatment and prevention of vitamin D deficiency in adults. Problems of Endocrinology. 2016.62(4):60-84. DOI:10.14341/probl201662460-84
23. Serce Pehlevan O, Karatekin G, Koksal V, et al. Association of vitamin D binding protein polymorphisms with bronchopulmonary dysplasia: a case–control study of gc globulin and bronchopulmonary dysplasia. J Perinatol. 2015;35(9):763-767. DOI:10.1038/jp.2015.58
24. Ishii T, Keicho N, Teramoto S, et al. Association of Gc-globulin variation with susceptibility to COPD and diffuse panbronchiolitis. Eur Respir J. 2001;18(5):753-757. DOI:10.1183/09031936.01.00094401
25. Santos BR, Lecke SB, Spritzer PM. Genetic variant in vitamin D-binding protein is associated with metabolic syndrome and lower 25-hydroxyvitamin D levels in polycystic ovary syndrome: A cross-sectional study. PLoS One. 2017;12(3):e0173695. DOI:10.1371/journal.pone.0173695
26. Daffara V, Verdoia M, Rolla R, et al. Impact of polymorphism rs7041 and rs4588 of Vitamin D Binding Protein on the extent of coronary artery disease. Nutr Metab Cardiovasc Dis. 2017;27(9):775-783. DOI:10.1016/j.numecd.2017.06.002
27. Skaaby T, Thuesen BH, Linneberg A. Vitamin D, Cardiovascular Disease and Risk Factors. In: Pharmacopsychiatry. Vol 52. Drug Discovery. Cambridge: Royal Society of Chemistry; 2017:221-230. DOI:10.1007/978-3-319-56017-5_18
28. Holmberg S, Rignell-Hydbom A, H Lindh C, et al. High levels of vitamin D associated with less ischemic heart disease – a nested case-control study among rural men in Sweden. Ann Agric Environ Med. 2017;24(2):288-293. DOI:10.5604/12321966.1235176
29. Welles CC, Whooley MA, Karumanchi SA, et al. Vitamin D Deficiency and Cardiovascular Events in Patients With Coronary Heart Disease: Data From the Heart and Soul Study. Am J Epidemiol. 2014;179(11):1279-1287. DOI:10.1093/aje/kwu059
30. Zhou J-C, Zhu Y, Gong C, et al. The GC2 haplotype of the vitamin D binding protein is a risk factor for a low plasma 25-hydroxyvitamin D concentration in a Han Chinese population. Nutr Metab (Lond). 2019;16(1):5. DOI:10.1186/s12986-019-0332-0
Supplementary files
Review
For citations:
Bogachev R.S., Kozel A.Y., Litvinova L.S., Mikhailova L.V., Shytova E.S., Ankudоvich V.B., Mordvintsev V.V., Dobrynina U.A. Vitamin D binding protein polymorphysm in patients with acute coronary syndrome in kaliningrad region. Obesity and metabolism. 2019;16(3):81-87. (In Russ.) https://doi.org/10.14341/omet9758

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).