Preview

Obesity and metabolism

Advanced search

Fragility fractures and bone remodeling in type 2 diabetes mellitus

https://doi.org/10.14341/omet2017311-18

Abstract

Fracture risk is significantly increased in both type 1 and type 2 diabetes and individuals with diabetes experience worse fracture outcomes compared to normoglycemic individuals. Patients with T1DM have decreased bone mineral density (BMD), whereas patients with T2DM demonstrate increased BMD compared to healthy control. The latest studies show increased incidence of low-traumatic fractures in patients with T2DM instead of high bone mineral density (BMD). The risk of osteoporotic fractures in patients with T2DM can be explained by disease complications and increased risk of falls and consequent trauma. However, the most important cause of bone fragility in T2DM is the deterioration in bone microarchitecture, the mechanism of which is not completely understood. High BMD in patients with T2DM does not allow us to use dual-energy X-ray-absorptiometry as a “gold standard” test for diagnosticsof osteoporosis. Consequently,new risk factors and diagnostic algorithm as well as treatment strategy should be developed for patients with T2DM. In addition to this, some researchers considered that the group of T2DM is geterogenous and physicians might face patients with osteoporosis and mild diabetes that add very little to bone fragility; patients with osteoporosis and moderate or severe diabetes which also affects bone tissue –diabetoosteoporosis; and patients without osteoporosis but severe diabetes which cause bone tissue deterioration with the development of diabetic bone disease. New diagnostic tools and algorithm and new experimental research are needed for better understanding bone deterioration in patients with T2DM. This review summarizes our current knowledge on fracture rate, risk factors for fractures and causes of bone deterioration in subjects with T2DM.

About the Authors

Tatiana O. Yalochkina
https://elibrary.ru/author_profile.asp?id=917514

Moscow outpatient clinic N 219


Russian Federation

MD, endocrinologist


Competing Interests:

Автор декларирует отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



Zhanna E. Belaya
https://elibrary.ru/author_profile.asp?id=583971

Endocrinology Research Centre


Russian Federation

Sc.D., Head of Department of neuroendocrinology and bone diseases


Competing Interests:

Автор декларирует отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



References

1. Atlas D. International Diabetes Federation. IDF Diabetes Atlas, 7th edn. Brussels, Belgium: International Diabetes Federation, 2015.

2. Ferrari S. Diabetes and Bone. Calcif Tissue Int. 2017;100(2):107-108. doi: 10.1007/s00223-017-0234-y.

3. Дедов И.И., Мельниченко Г.А., Белая Ж.Е., Рожинская Л.Я. Остеопороз – от редкого симптома эндокринных болезней до безмолвной эпидемии XX-XXI века. //Проблемы эндокринологии. – 2011. – Т. 57. – №1. – С. 35-45. [Dedov II, Mel'nichenko GA, Belaia ZE, Rozhinskaia LI. Osteoporosis: from a rare symptom of endocrine diseases to the tacit epidemic of XX-XXI centuries. Problems of Endocrinology. 2011;57(1):35-45. (In Russ).] doi: 10.14341/probl201157135-45.

4. van Daele PLA. Bone Density in Non-Insulin-Dependent Diabetes Mellitus: The Rotterdam Study. Ann Intern Med. 1995;122(6):409. doi: 10.7326/0003-4819-122-6-199503150-00002.

5. de Liefde II, van der Klift M, de Laet CEDH, et al. Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam Study. Osteoporos Int. 2005;16(12):1713-1720. doi: 10.1007/s00198-005-1909-1.

6. Strotmeyer ES, Cauley JA, Schwartz AV, et al. Nontraumatic Fracture Risk With Diabetes Mellitus and Impaired Fasting Glucose in Older White and Black Adults. Arch Intern Med. 2005;165(14):1612. doi: 10.1001/archinte.165.14.1612.

7. Koh WP, Wang R, Ang LW, et al. Diabetes and Risk of Hip Fracture in the Singapore Chinese Health Study. Diabetes Care. 2010;33(8):1766-1770. doi: 10.2337/dc10-0067.

8. Vestergaard P, Rejnmark L, Mosekilde L. Diabetes and Its Complications and Their Relationship with Risk of Fractures in Type 1 and 2 Diabetes. Calcif Tissue Int. 2008;84(1):45-55. doi: 10.1007/s00223-008-9195-5.

9. Schwartz AV. Association of BMD and FRAX Score With Risk of Fracture in Older Adults With Type 2 Diabetes. JAMA. 2011;305(21):2184. doi: 10.1001/jama.2011.715.

10. Giangregorio LM, Leslie WD, Lix LM, et al. FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res. 2012;27(2):301-308. doi: 10.1002/jbmr.556.

11. Bonds DE, Larson JC, Schwartz AV, et al. Risk of Fracture in Women with Type 2 Diabetes: the Women’s Health Initiative Observational Study. J Clin Endocr Metab. 2006;91(9):3404-3410. doi: 10.1210/jc.2006-0614.

12. Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic Review of Type 1 and Type 2 Diabetes Mellitus and Risk of Fracture. Am J Epidemiol. 2007;166(5):495-505. doi: 10.1093/aje/kwm106.

13. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int. 2006;18(4):427-444. doi: 10.1007/s00198-006-0253-4.

14. Yamamoto M, Yamaguchi T, Yamauchi M, et al. Diabetic Patients Have an Increased Risk of Vertebral Fractures Independent of BMD or Diabetic Complications. J Bone Miner Res. 2009;24(4):702-709. doi: 10.1359/jbmr.081207.

15. Ялочкина Т.О., Белая Ж.К., Рожинская Л.Я., и др. Переломы костей при сахарном диабете 2 типа: распространенность и факторы риска // Сахарный диабет. – 2016. – Т.19. – №5. – С. 359-365. [Yalochkina TO, Belaya JE, Rozhinskaya LY, et al. Bone fractures in patients with type 2 diabetes mellitus: prevalence and risk factors. Diabetes mellitus. 2016;19(5):359-365. (In Russ).] doi: 10.14341/DM7796.

16. Strotmeyer ES, Cauley JA, Schwartz AV, et al. Diabetes Is Associated Independently of Body Composition With BMD and Bone Volume in Older White and Black Men and Women: The Health, Aging, and Body Composition Study. J Bone Miner Res. 2004;19(7):1084-1091. doi: 10.1359/jbmr.040311.

17. Kanis JA, McCloskey EV, Johansson H, et al. Development and use of FRAX® in osteoporosis. Osteoporos Int. 2010;21(S2):407-413. doi: 10.1007/s00198-010-1253-y.

18. Díaz-López A, Bulló M, Juanola-Falgarona M, et al. Reduced Serum Concentrations of Carboxylated and Undercarboxylated Osteocalcin Are Associated With Risk of Developing Type 2 Diabetes Mellitus in a High Cardiovascular Risk Population: A Nested Case-Control Study. J Clin Endocr Metab. 2013;98(11):4524-4531. doi: 10.1210/jc.2013-2472.

19. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser. 1994;843:1-129.

20. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 2009;8(9):1137-1148. doi: 10.1002/jbmr.5650080915.

21. Guglielmi G, Diacinti D, van Kuijk C, et al. Vertebral morphometry: current methods and recent advances. Eur Radiol. 2008;18(7):1484-1496. doi: 10.1007/s00330-008-0899-8.

22. Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In VivoAssessment of Trabecular Bone Microarchitecture by High-Resolution Peripheral Quantitative Computed Tomography. J Clin Endocr Metab. 2005;90(12):6508-6515. doi: 10.1210/jc.2005-1258.

23. Genant HK, Engelke K, Prevrhal S. Advanced CT bone imaging in osteoporosis. Rheumatology. 2008;47(Supplement 4):iv9-iv16. doi: 10.1093/rheumatology/ken180.

24. Krug R, Carballido-Gamio J, Banerjee S, et al. In vivo ultra-high-field magnetic resonance imaging of trabecular bone microarchitecture at 7 T. J Magn Reson Imaging. 2008;27(4):854-859. doi: 10.1002/jmri.21325.

25. Цориев Т.Т., Белая Ж.Е., Мельниченко Г.А. Трабекулярный костный индекс – неинвазивный метод оценки качества костной ткани на основании рутинной двухэнергетической денситометрии. Перспективы использования в клинической практике // Альманах клинической медицины. – 2016. – Т.44. – №4. – С.462-476. [Tsoriev TT, Belaya ZE, Melnichenko GA. Trabecular bone score – a non-invasive analytical method to evaluate bone quality based on routine dual-energy absorptiometry. Perspectives of its use in clinical practice. Almanac of Clinical Medicine. 2016;44(4):462-476. (In Russ).] doi: 10.18786/2072-0505-2016-44-4-462-476.

26. Pothuaud L, Barthe N, Krieg M-A, et al. Evaluation of the Potential Use of Trabecular Bone Score to Complement Bone Mineral Density in the Diagnosis of Osteoporosis: A Preliminary Spine BMD–Matched, Case-Control Study. J Clin Densitom. 2009;12(2):170-176. doi: 10.1016/j.jocd.2008.11.006.

27. ans D, Barthe N, Boutroy S, et al. Correlations Between Trabecular Bone Score, Measured Using Anteroposterior Dual-Energy X-Ray Absorptiometry Acquisition, and 3-Dimensional Parameters of Bone Microarchitecture: An Experimental Study on Human Cadaver Vertebrae. J Clin Densitom. 2011;14(3):302-312. doi: 10.1016/j.jocd.2011.05.005.

28. Rabier B, Héraud A, Grand-Lenoir C, et al. A multicentre, retrospective case–control study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): Analysing the odds of vertebral fracture. Bone. 2010;46(1):176-181. doi: 10.1016/j.bone.2009.06.032.

29. Winzenrieth R, Dufour R, Pothuaud L, Hans D. A Retrospective Case–Control Study Assessing the Role of Trabecular Bone Score in Postmenopausal Caucasian Women with Osteopenia: Analyzing the Odds of Vertebral Fracture. Calcif Tissue Int. 2009;86(2):104-109. doi: 10.1007/s00223-009-9322-y.

30. Leslie WD, Pahlavan PS, Tsang JF, Lix LM. Prediction of hip and other osteoporotic fractures from hip geometry in a large clinical cohort. Osteoporos Int. 2009;20(10):1767-1774. doi: 10.1007/s00198-009-0874-5.

31. Белая Ж.Е., Смирнова О.М., Дедов И.И. Роль физических нагрузок в норме и при сахарном диабете //Проблемы эндокринологии. – 2005. – Т. 51. – №2. – С. 28-37. [Belaya ZhE, Smirnova OM, Dedov II. Rol' fizicheskikh nagruzok v norme i pri sakharnom diabete. Problems of Endocrinology. 2005;51(2):28-37. (In Russ.)] doi:10.14341/probl200551228-37.

32. Malmivaara A, Heliövaara M, Knekt P, et al. Risk Factors for Injurious Falls Leading to Hospitalization or Death in a Cohort of 19,500 Adults. Am J Epidemiol. 1993;138(6):384-394. doi: 10.1093/oxfordjournals.aje.a116871.

33. Gregg EW, Beckles GL, Williamson DF, et al. Diabetes and physical disability among older U.S. adults. Diabetes Care. 2000;23(9):1272-1277. doi: 10.2337/diacare.23.9.1272.

34. Schwartz AV, Vittinghoff E, Sellmeyer DE, et al. Diabetes-Related Complications, Glycemic Control, and Falls in Older Adults. Diabetes Care. 2007;31(3):391-396. doi: 10.2337/dc07-1152.

35. Low PA, Benrud-Larson LM, Sletten DM, et al. Autonomic Symptoms and Diabetic Neuropathy: A population-based study. Diabetes Care. 2004;27(12):2942-2947. doi: 10.2337/diacare.27.12.2942.

36. Ivers RQ, Cumming RG, Mitchell P, Peduto AJ. Diabetes and Risk of Fracture: The Blue Mountains Eye Study. Diabetes Care. 2001;24(7):1198-1203. doi: 10.2337/diacare.24.7.1198.

37. Muñoz-Torres M, Reyes-García R, García-Martin A, et al. Ischemic heart disease is associated with vertebral fractures in patients with type 2 diabetes mellitus. Journal of Diabetes Investigation. 2013;4(3):310-315. doi: 10.1111/jdi.12034.

38. Viégas M, Costa C, Lopes A, et al. Prevalence of osteoporosis and vertebral fractures in postmenopausal women with type 2 diabetes mellitus and their relationship with duration of the disease and chronic complications. J Diabetes Complications. 2011;25(4):216-221. doi: 10.1016/j.jdiacomp.2011.02.004.

39. Melton LJ, Leibson CL, Achenbach SJ, et al. Fracture Risk in Type 2 Diabetes: Update of a Population-Based Study. J Bone Miner Res. 2008;23(8):1334-1342. doi: 10.1359/jbmr.080323.

40. Fadini GP, Zoppini G, Galletti A, et al. Glycated Haemoglobin Is Inversely Related to Serum Vitamin D Levels in Type 2 Diabetic Patients. PLoS One. 2013;8(12):e82733. doi: 10.1371/journal.pone.0082733.

41. Kim YJ, Park SO, Kim TH, et al. The association of serum 25-hydroxyvitamin D and vertebral fractures in patients with type 2 diabetes. Endocr J. 2013:179-184. doi: 10.1507/endocrj.EJ12-0269.

42. Ferrari GO, Ferreira JC, Cavallari RT, et al. Mineral bone disorder in chronic kidney disease: head-to-head comparison of the 5/6 nephrectomy and adenine models. BMC Nephrol. 2014;15(1). doi: 10.1186/1471-2369-15-69.

43. Kazama JJ, Iwasaki Y, Fukagawa M. Uremic osteoporosis. Kidney Int Suppl. 2013;3(5):446-450.

44. Janghorbani M, Feskanich D, Willett WC, Hu F. Prospective study of diabetes and risk of hip fracture: the Nurses’ Health Study. Diabetes Care 2006;29(7):1573–8. doi: 10.1038/kisup.2013.93

45. Hothersall EJ, Livingstone SJ, Looker HC, et al. Contemporary risk of hip fracture in type 1 and type 2 diabetes: a national registry study from Scotland. J Bone Miner Res. 2014;29(5):1054-60. doi: 10.1002/jbmr.2118.

46. Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia. 2005;48(7):1292-1299. doi: 10.1007/s00125-005-1786-3.

47. Lipscombe LL, Jamal SA, Booth GL, Hawker GA. The Risk of Hip Fractures in Older Individuals With Diabetes: A population-based study. Diabetes Care. 2007;30(4):835-841. doi: 10.2337/dc06-1851.

48. Hein GE. Glycation endproducts in osteoporosis — Is there a pathophysiologic importance? Clin Chim Acta. 2006;371(1-2):32-36. doi: 10.1016/j.cca.2006.03.017.

49. Vashishth D, Gibson GJ, Khoury JI, et al. Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone. 2001;28(2):195-201. doi: 10.1016/s8756-3282(00)00434-8.

50. Yamamoto T, Ozono K, Miyauchi A, et al. Role of advanced glycation end products in adynamic bone disease in patients with diabetic nephropathy. Am J Kidney Dis. 2001;38(4):S161-S164. doi: 10.1053/ajkd.2001.27428.

51. Hein G. Advanced glycation end product modification of bone proteins and bone remodelling: hypothesis and preliminary immunohistochemical findings. Ann Rheum Dis. 2006;65(1):101-104. doi: 10.1136/ard.2004.034348.

52. Botolin S, McCabe LR. Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways. J Cell Biochem. 2006;99(2):411-424. doi: 10.1002/jcb.20842.

53. Tamura T, Yoneda M, Yamane K, et al. Serum leptin and adiponectin are positively associated with bone mineral density at the distal radius in patients with type 2 diabetes mellitus. Metabolism. 2007;56(5):623-628. doi: 10.1016/j.metabol.2006.12.008.

54. Гребенникова Т.А., Белая Ж.Е., Рожинская Л.Я., Мельниченко Г.А. Канонический сигнальный путь wnt /β-катенин: от истории открытия до клинического применения //Терапевтический архив. – 2016. – Т. 88. – № 10. – С. 74-81. [Grebennikova TA, Belaya ZE, Rozhinskaya LY, Melnichenko GA. The canonical Wnt/β-catenin pathway: From the history of its discovery to clinical application. Terapevticheskiy arkhiv. 2016:88(10):74-81. (In Russ).] doi: 10.17116/terarkh201688674-81

55. Гребенникова Т.А. Белая Ж.Е., Рожинская Л.Я., и др. Эпигенетические аспекты остеопороза // Вестник Российской Академии медицинских наук. – 2015. – Т.70. – №5. – С.541-548. [Grebennikova TA, Belaya ZE, Rozhinskaya LY, et al. Epigenetic Aspects of Osteoporosis. Vestnik RAMN. 2015;70(5):541-548. (In Russ).] doi: 10.15690/vramn.v70.i5.1440

56. Power J, Poole KES, van Bezooijen R, et al. Sclerostin and the regulation of bone formation: Effects in hip osteoarthritis and femoral neck fracture. J Bone Miner Res. 2010;25(8):1867-1876. doi: 10.1002/jbmr.70.

57. García-Martín A, Rozas-Moreno P, Reyes-García R, et al. Circulating Levels of Sclerostin Are Increased in Patients with Type 2 Diabetes Mellitus. J Clin Endocr Metab. 2012;97(1):234-241. doi: 10.1210/jc.2011-2186.

58. Ardawi M-SM, Akhbar DH, AlShaikh A, et al. Increased serum sclerostin and decreased serum IGF-1 are associated with vertebral fractures among postmenopausal women with type-2 diabetes. Bone. 2013;56(2):355-362. doi: 10.1016/j.bone.2013.06.029.

59. Fazeli PK, Horowitz MC, MacDougald OA, et al. Marrow Fat and Bone—New Perspectives. J Clin Endocr Metab. 2013;98(3):935-945. doi: 10.1210/jc.2012-3634.

60. Napoli N, Chandran M, Pierroz DD, et al. Mechanisms of diabetes mellitus-induced bone fragility. Nature Reviews Endocrinology. 2016;13(4):208-219. doi: 10.1038/nrendo.2016.153.


Supplementary files

1. Рис. 1. Компрессионный перелом первого поясничного позвонка на боковой рентгенографии.
Subject
Type Исследовательские инструменты
View (166KB)    
Indexing metadata ▾
2. Рис. 2. Сигнальный путь wnt/бета-катенин и его ингибирование склеростином.
Subject
Type Исследовательские инструменты
View (30KB)    
Indexing metadata ▾
3. Рис. 3. Механизмы, приводящие к повышенному риску переломов при СД2.
Subject
Type Исследовательские инструменты
View (50KB)    
Indexing metadata ▾

Review

For citations:


Yalochkina T.O., Belaya Zh.E. Fragility fractures and bone remodeling in type 2 diabetes mellitus. Obesity and metabolism. 2017;14(3):11-18. (In Russ.) https://doi.org/10.14341/omet2017311-18

Views: 2593


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)