Features of vitamin D metabolism during pregnancy
https://doi.org/10.14341/omet13217
Abstract
Vitamin D plays an important role in the regulation of the «mother-placenta-fetus» system, participating in ensuring normal growth and development of the fetus, reducing the risks of hypocalcemia, muscle cramps, respiratory infections in childhood. To date, the existence of more than 50 metabolites of vitamin D has been established, of which the most studied are total 25-hydroxyvitamin D (25 (OH) D) and 1,25-dihydroxyvitamin D (1,25 (OH) 2D), which is due, first of all, to their importance for the endocrine regulation of calcium-phosphorus metabolism. The level of 25 (OH) D in the blood is an optimal, but not perfect marker of vitamin D status, and does not reflect the numerous effects of its metabolites. Taking into account the special metabolic adaptation of a woman’s body during gestation, the analysis of quantitative changes in various vitamin D metabolites is of particular relevance. This review summarizes the available data on the characteristics of vitamin D metabolism outside gestation and during pregnancy.
About the Authors
I. A. KatsobashviliRussian Federation
Ilana A. Katsobashvili - MD
11 Dm. Ulyanova street, 117292 Moscow
Competing Interests:
none
E. A. Pigarova
Russian Federation
Ekaterina A. Pigarova - MD, PhD. Scopus Author ID: 55655098500; Researcher ID: T-9424-2018.
Moscow
Competing Interests:
none
S. Y. Vorotnikova
Russian Federation
Svetlana Y.Vorotnikova - MD, PhD.
Moscow
Competing Interests:
none
E. E. Bibik
Russian Federation
Ekaterina E. Bibik - MD, PhD; Researcher ID: AAY-3052-2020; Scopus Author ID: 57195679482.
Moscow
Competing Interests:
none
L. K. Dzeranova
Russian Federation
Larisa K. Dzeranova - MD, PhD.
Moscow
Competing Interests:
none
References
1. Tuckey RC, Cheng CYS, Slominski AT. The serum vitamin D metabolome: What we know and what is still to discover. J Steroid Biochem Mol Biol. 2019;186:4-21. doi: https://doi.org/10.1016/j.jsbmb.2018.09.003
2. Tareke AA, Alem A, Debebe W, et al. Maternal vitamin D and growth of under-five children: a systematic review and meta-analysis of observational and interventional studies. Glob Health Action. 2022;15(1):2102712. doi: https://doi.org/10.1080/16549716.2022.2102712
3. Wagner CL, Hollis BW. The extraordinary metabolism of vitamin D. Elife. 2022;11:e77539. doi: https://doi.org/10.7554/eLife.77539
4. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev. 2016;96(1):365-408. doi: https://doi.org/10.1152/physrev.00014.2015
5. Figueiredo ACC, Cocate PG, Adegboye ARA, et al. Changes in plasma concentrations of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D during pregnancy: a Brazilian cohort. Eur J Nutr. 2018;57(3):1059-1072. doi: https://doi.org/10.1007/s00394-017-1389-z
6. Karras SN, Wagner CL, Castracane VD. Understanding vitamin D metabolism in pregnancy: From physiology to pathophysiology and clinical outcomes. Metabolism. 2018;86:112-123. doi: https://doi.org/10.1016/j.metabol.2017.10.001
7. Zhang R, Naughton DP. Vitamin D in health and disease: current perspectives. Nutr J. 2010;9:65. doi: https://doi.org/10.1186/1475-2891-9-65
8. Jones G, Prosser DE, Kaufmann M. Cytochrome P450-mediated metabolism of vitamin D. J Lipid Res. 2014;55(1):13-31. doi: https://doi.org/10.1194/jlr.R031534
9. Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21(3):319-329. doi: https://doi.org/10.1016/j.chembiol.2013.12.016
10. DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004;80(6 Suppl):1689S-96S. doi: https://doi.org/10.1093/ajcn/80.6.1689S
11. Hewison M, Burke F, Evans KN, et al. Extra-renal 25-hydroxyvitamin D3-1alpha-hydroxylase in human health and disease. J Steroid Biochem Mol Biol. 2007;103(3-5):316-321. doi: https://doi.org/10.1016/j.jsbmb.2006.12.078
12. Pike JW, Christakos S. Biology and Mechanisms of Action of the Vitamin D Hormone. Endocrinol Metab Clin North Am. 2017;46(4):815-843. doi: https://doi.org/10.1016/j.ecl.2017.07.001
13. Lensmeyer G, Poquette M, Wiebe D, Binkley N. The C-3 epimer of 25-hydroxyvitamin D(3) is present in adult serum. J Clin Endocrinol Metab. 2012;97(1):163-168. doi: https://doi.org/10.1210/jc.2011-0584
14. Kamao M, Tatematsu S, Hatakeyama S, et al. C-3 epimerization of vitamin D3 metabolites and further metabolism of C-3 epimers: 25-hydroxyvitamin D3 is metabolized to 3-epi-25-hydroxyvitamin D3 and subsequently metabolized through C-1alpha or C-24 hydroxylation. J Biol Chem. 2004;279(16):15897-15907. doi: https://doi.org/10.1074/jbc.M311473200
15. Masuda S, Kamao M, Schroeder NJ, et al. Characterization of 3-epi-1alpha,25-dihydroxyvitamin D3 involved in 1alpha,25-dihydroxyvitamin D3 metabolic pathway in cultured cell lines. Biol Pharm Bull. 2000;23(2):133-139. doi: https://doi.org/10.1248/bpb.23.133
16. Nakagawa K, Sowa Y, Kurobe M, et al. Differential activities of 1alpha,25-dihydroxy-16-ene-vitamin D(3) analogs and their 3-epimers on human promyelocytic leukemia (HL-60) cell differentiation and apoptosis. Steroids. 2001;66(3-5):327-337. doi: https://doi.org/10.1016/s0039-128x(00)00142-2
17. Omdahl JL, Morris HA, May BK. Hydroxylase enzymes of the vitamin D pathway: expression, function, and regulation. Annu Rev Nutr. 2002;22:139-166. doi: https://doi.org/10.1146/annurev.nutr.22.120501.150216
18. Veldurthy V, Wei R, Campbell M, Lupicki K, Dhawan P, Christakos S. 25-Hydroxyvitamin D₃ 24-Hydroxylase: A Key Regulator of 1,25(OH)₂D₃ Catabolism and Calcium Homeostasis. Vitam Horm. 2016;100:137-150. doi: https://doi.org/10.1016/bs.vh.2015.10.005
19. Dinour D, Beckerman P, Ganon L, Tordjman K, Eisenstein Z, Holtzman EJ. Loss-of-function mutations of CYP24A1, the vitamin D 24-hydroxylase gene, cause long-standing hypercalciuric nephrolithiasis and nephrocalcinosis. J Urol. 2013;190(2):552-557. doi: https://doi.org/10.1016/j.juro.2013.02.3188
20. Azer SM, Vaughan LE, Tebben PJ, Sas DJ. 24-Hydroxylase Deficiency Due to CYP24A1 Sequence Variants: Comparison With Other Vitamin D-mediated Hypercalcemia Disorders. J Endocr Soc. 2021;5(9):bvab119. doi: https://doi.org/10.1210/jendso/bvab119
21. Delrue C, Speeckaert MM. Vitamin D and Vitamin D Binding Protein in Health and Disease 2.0. Int J Mol Sci. 2023;24(12):10316. doi: https://doi.org/10.3390/ijms241210316
22. Nemere I, Safford SE, Rohe B, DeSouza MM, Farach-Carson MC. Identification and characterization of 1,25D3-membrane-associated rapid response, steroid (1,25D3-MARRS) binding protein. J Steroid Biochem Mol Biol. 2004;89-90(1-5):281-285. doi: https://doi.org/10.1016/j.jsbmb.2004.03.031
23. Sequeira VB, Rybchyn MS, Tongkao-On W, et al. The role of the vitamin D receptor and ERp57 in photoprotection by 1α,25-dihydroxyvitamin D3. Mol Endocrinol. 2012;26(4):574-582. doi: https://doi.org/10.1210/me.2011-1161
24. Eremkina AK, Mokrysheva NG, Pigarova EA, et al. Vitamin D: effects on the course and outcomes of pregnancy, fetal development and children’s health in the postnatal period. Therapeutic Archive. 2018;(10):115-127. (In Russ.). doi: https://doi.org/10.26442/terarkh20189010115-127
25. Speeckaert M, Huang G, Delanghe JR, Taes YE. Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism. Clin Chim Acta. 2006;372(1-2):33-42. doi: https://doi.org/10.1016/j.cca.2006.03.011
26. Moy KA, Mondul AM, Zhang H, et al. Genome-wide association study of circulating vitamin D-binding protein. Am J Clin Nutr. 2014;99(6):1424-1431. doi: https://doi.org/10.3945/ajcn.113.080309
27. Dahl B, Schiødt FV, Gehrchen PM, Ramlau J, Kiaer T, Ott P. Gc-globulin is an acute phase reactant and an indicator of muscle injury after spinal surgery. Inflamm Res. 2001;50(1):39-43. doi: https://doi.org/10.1007/s000110050722
28. Bouillon R, Schuit F, Antonio L, Rastinejad F. Vitamin D Binding Protein: A Historic Overview. Front Endocrinol (Lausanne). 2020;10:910. doi: https://doi.org/10.3389/fendo.2019.00910
29. Meier U, Gressner O, Lammert F, Gressner AM. Gc-globulin: roles in response to injury. Clin Chem. 2006;52(7):1247-1253. doi: https://doi.org/10.1373/clinchem.2005.065680
30. Ashley B, Simner C, Manousopoulou A, et al. Placental uptake and metabolism of 25(OH)vitamin D determine its activity within the fetoplacental unit. Elife. 2022;11:e71094. doi: https://doi.org/10.7554/eLife.71094
31. Mahon P, Harvey N, Crozier S, Inskip H, Robinson S, et al. Low maternal vitamin D status and fetal bone development: cohort study. Journal of Bone and Mineral Research. 2010;25:14–19. doi: https://doi.org/10.1359/jbmr.090701
32. Boyle VT, Thorstensen EB, Thompson JMD, McCowan LME, Mitchell EA, et al. The relationship between maternal 25-hydroxyvitamin D status in pregnancy and childhood adiposity and allergy: an observational study. International Journal of Obesity. 2017;41:1755–1760. doi: https://doi.org/10.1038/ijo.2017.182
33. Kiely ME, Wagner CL, Roth DE. Vitamin D in pregnancy: Where we are and where we should go. J Steroid Biochem Mol Biol. 2020;201:105669. doi: https://doi.org/10.1016/j.jsbmb.2020.105669
34. Papapetrou PD. The interrelationship of serum 1,25-dihydroxyvitamin D, 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D in pregnancy at term: a meta-analysis. Hormones (Athens). 2010;9(2):136-144. doi: https://doi.org/10.14310/horm.2002.1263
35. Park H, Wood MR, Malysheva OV, et al. Placental vitamin D metabolism and its associations with circulating vitamin D metabolites in pregnant women. Am J Clin Nutr. 2017;106(6):1439-1448. doi: https://doi.org/10.3945/ajcn.117.153429
36. Wagner CL, McNeil R, Hamilton SA, et al. A randomized trial of vitamin D supplementation in 2 community health center networks in South Carolina. Am J Obstet Gynecol. 2013;208(2):137.e1-137.13. doi: https://doi.org/10.1016/j.ajog.2012.10.888
37. Bennett SE, Casey C, McPeake J, McCance DR, Manderson JG, McGinty A. 3-Epi-25 hydroxyvitamin D in pregnancy. Pregnancy Hypertens. 2014;4(3):236. doi: https://doi.org/10.1016/j.preghy.2014.03.021
38. Kirby BJ, Ma Y, Martin HM, Buckle Favaro KL, Karaplis AC, Kovacs CS. Upregulation of calcitriol during pregnancy and skeletal recovery after lactation do not require parathyroid hormone. J Bone Miner Res. 2013;28(9):1987-2000. doi: https://doi.org/10.1002/jbmr.1925
39. Kovacs CS. The role of vitamin D in pregnancy and lactation: insights from animal models and clinical studies. Annu Rev Nutr. 2012;32:97-123. doi: https://doi.org/10.1146/annurev-nutr-071811-150742
40. Nakayama S, Yasui T, Suto M, et al. Differences in bone metabolism between singleton pregnancy and twin pregnancy. Bone. 2011;49(3):513-519. doi: https://doi.org/10.1016/j.bone.2011.05.016
41. Mokrysheva NG, Krupinova YuA, Kovaleva EV. Parathyroid hormone and similar peptides. Literature review. Bulletin of the Russian Academy of Medical Sciences. 2019;74(2):136-144. (In Russ.) doi: https://doi.org/10.15690/vramn1104
42. Best CM, Pressman EK, Queenan RA, Cooper E, Vermeylen F, O’Brien KO. Gestational Age and Maternal Serum 25-hydroxyvitamin D Concentration Interact to Affect the 24,25-dihydroxyvitamin D Concentration in Pregnant Adolescents. J Nutr. 2018;148(6):868-875. doi: https://doi.org/10.1093/jn/nxy043
43. Slominski AT, Kim TK, Shehabi HZ, et al. In vivo production of novel vitamin D2 hydroxy-derivatives by human placentas, epidermal keratinocytes, Caco-2 colon cells and the adrenal gland. Mol Cell Endocrinol. 2014;383(1-2):181-192. doi: https://doi.org/10.1016/j.mce.2013.12.012
44. Kovacs CS, Woodland ML, Fudge NJ, Friel JK. The vitamin D receptor is not required for fetal mineral homeostasis or for the regulation of placental calcium transfer in mice. Am J Physiol Endocrinol Metab. 2005;289(1):E133-E144. doi: https://doi.org/10.1152/ajpendo.00354.2004
45. Mirzakhani H, Litonjua AA, McElrath TF, O’Connor G, Lee-Parritz A, et al. Early pregnancy vitamin D status and risk of preeclampsia. The Journal of Clinical Investigation. 2016;126:4702–4715. doi: https://doi.org/10.1172/JCI89031
46. Khatiwada A, Wolf BJ, Mulligan JK, Shary JR, Hewison M, et al. Effects of vitamin D supplementation on circulating concentrations of growth factors and immune-mediators in healthy women during pregnancy. Pediatric Research. 2021;89:554–562. doi: https://doi.org/10.1038/s41390-020-0885-7
47. Zahran AM, Zharan KM, Hetta HF. Significant correlation between regulatory T cells and vitamin D status in term and preterm labor. Journal of Reproductive Immunology. 2018;129:15–22. doi: https://doi.org/10.1016/j.jri.2018.07.004
48. Rehan VK, Torday JS, Peleg S, et al. 1Alpha,25-dihydroxy-3-epi-vitamin D3, a natural metabolite of 1alpha,25-dihydroxy vitamin D3: production and biological activity studies in pulmonary alveolar type II cells. Mol Genet Metab. 2002;76(1):46-56. doi: https://doi.org/10.1016/s1096-7192(02)00022-7
Supplementary files
Review
For citations:
Katsobashvili I.A., Pigarova E.A., Vorotnikova S.Y., Bibik E.E., Dzeranova L.K. Features of vitamin D metabolism during pregnancy. Obesity and metabolism. 2025;22(2):111-117. (In Russ.) https://doi.org/10.14341/omet13217

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).