Preview

Ожирение и метаболизм

Расширенный поиск

Supplementation with pentadecylresorcinol to a high-fat diet increases the predicted representation of enzymes and metabolic pathways for vitamin b12 synthesis by the gut microbiota of c57bl6 mice

https://doi.org/10.14341/omet13198

Аннотация

5-Pentadecylresorcinol (C15) is a natural alkylresorcinol that has been shown to protect against complications caused by imbalanced nutrition. Although the exact mechanisms of beneficial activity of C15 are not known, we assume that the protective effects of C15 on metabolic health are mediated by their modulatory influence on the composition of the intestinal microbiota and functional activity. Cobamides and vitamin B12 are believed to be crucial modulators of mammalian gut ecosystems. We proposed that C15 may influence the representation of enzymes and pathways for vitamin B12 synthesis in the gut microbiome, providing compositional and functional changes in the microbial community. High-throughput metagenome sequencing of the contents of the small and large intestines of C57Bl6 mice fed a regular or high-fat diet with or without C15 supplementation was performed followed by reconstruction of the metabolic activity of the microbiota to clarify the role of C15 in vitamin B12 synthesis by the gut microbiota. It has been established that C15 significantly increases the representation of the cobalamin salvage pathway and enzymes in the microbiome of the large intestine of mice fed a highfat diet. The genera Clostridium, AF12, and [Ruminococcus] had shown the highest number of correlations with enzymes for B12 synthesis and were negatively associated with the representation of probiotic bacteria. Therefore, the beneficial effect of C15 on the gut microbiota community can be achieved by modulating B12 synthesis that, in turn, serves as one of the key regulators of gut microbiota ecology.

Об авторах

А. А. Заболотнева
Department of Biochemistry and Molecular Biology, Institute of Medical Chemistry and Pharmacie, N.I. Pirogov Russian National Research Medical Universityl; Laboratory of Biochemistry of Signaling Pathways, Endocrinology Research Center
Россия

Заболотнева Анастасия Александровна, к.б.н., ст.н.с., доцент 

Moscow 

ScopusAuthor ID: 36612706700 


Конфликт интересов:

Авторы декларируют отсутствие конфликта интересов



М. Д. Макеев
Department of Biochemistry and Molecular Biology, Institute of Medical Chemistry and Pharmacie, N.I. Pirogov Russian National Research Medical Universityl
Россия

Макеев Михаил Дмитриевич, студент 

Moscow 


Конфликт интересов:

Авторы декларируют отсутствие конфликта интересов



А. В. Фесенко
Department of Biochemistry and Molecular Biology, Institute of Medical Chemistry and Pharmacie, N.I. Pirogov Russian National Research Medical Universityl
Россия

Фесенко Анастасия Владимировна, студентка 

Moscow 


Конфликт интересов:

Авторы декларируют отсутствие конфликта интересов



С. А. Румянцев
Department of Biochemistry and Molecular Biology, Institute of Medical Chemistry and Pharmacie, N.I. Pirogov Russian National Research Medical Universityl; Laboratory of Biochemistry of Signaling Pathways, Endocrinology Research Center
Россия

Сергей Александрович Румянцев, д.м.н., член-корр. РАН Moscow 

Scopus Author ID: 6506470384 


Конфликт интересов:

Авторы декларируют отсутствие конфликта интересов



А. В. Шестопалов
Department of Biochemistry and Molecular Biology, Institute of Medical Chemistry and Pharmacie, N.I. Pirogov Russian National Research Medical Universityl; Laboratory of Biochemistry of Signaling Pathways, Endocrinology Research Center
Россия

Шестопалов Александр Вячеславович, д.м.н.  

Moscow 

Scopus Author ID: 57195032259 


Конфликт интересов:

Авторы декларируют отсутствие конфликта интересов



Список литературы

1. de Araújo FF, de Paulo Farias D, Neri-Numa IA, Pastore GM. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem. 2021;338:127535. doi: https://doi.org/10.1016/j.foodchem.2020.127535

2. Gasmi A, Mujawdiya PK, Noor S, Lysiuk R, Darmohray R, et al. Polyphenols in Metabolic Diseases. Molecules. 2022;27:6280. doi: https://doi.org/10.3390/molecules27196280

3. Pérez de Vega MJ, Moreno-Fernández S, Pontes-Quero GM, González-Amor M, Vázquez-Lasa B, et al. Characterization of Novel Synthetic Polyphenols: Validation of Antioxidant and Vasculoprotective Activities. Antioxidants. 2020;9:787. doi: https://doi.org/10.3390/antiox9090787

4. Gu W, Geng J, Zhao H, Li X, Song G. Effects of Resveratrol on Metabolic Indicators in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Int J Clin Pract. 2022;2022:1–19. doi: https://doi.org/10.1155/2022/9734738

5. El-Kot SM, Wanas W, Hafez AM, Mahmoud NA, Tolba AM, et al. Effect of silymarin on the relative gene expressions of some inflammatory cytokines in the liver of CCl4-intoxicated male rats. Sci Rep. 2023;13:15245. doi: https://doi.org/10.1038/s41598-023-42250-7

6. Zern TL, Fernandez ML. Cardioprotective Effects of Dietary Polyphenols. J Nutr. 2005;135:2291–4. doi: https://doi.org/10.1093/jn/135.10.2291

7. Zabolotneva AA, Shatova OP, Sadova AA, Shestopalov AV, Roumiantsev SA. An Overview of Alkylresorcinols Biological Properties and Effects. J Nutr Metab. 2022;2022:1–12. doi: https://doi.org/10.1155/2022/4667607

8. Zabolotneva AA, Vasiliev IYu, Grigoryeva T, Gaponov AM, Chekhonin VP, et al. Supplementation of a High-Fat Diet with Pentadecylresorcinol Increases the Representation of Akkermansia muciniphila in the Mouse Small and Large Intestines and May Protect against Complications Caused by Imbalanced Nutrition. Int J Mol Sci. 2024;25:6611. doi: https://doi.org/10.3390/ijms25126611

9. Shang Y, Khafipour E, Derakhshani H, Sarna LK, Woo CW, et al. Short Term High Fat Diet Induces Obesity‐Enhancing Changes in Mouse Gut Microbiota That are Partially Reversed by Cessation of the High Fat Diet. Lipids. 2017;52:499–511. doi: https://doi.org/10.1007/s11745-017-4253-2

10. Machate DJ, Figueiredo PS, Marcelino G, Guimarães R de CA, Hiane PA, et al. Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis. Int J Mol Sci. 2020;21:4093. doi: https://doi.org/10.3390/ijms21114093

11. Zabolotneva AA, Kolesnikova IM, Vasiliev IYu, Grigoryeva TV, Roumiantsev SA, Shestopalov AV. The Obesogenic Gut Microbiota as a Crucial Factor Defining the Depletion of Predicted Enzyme Abundance for Vitamin B12 Synthesis in the Mouse Intestine. Biomedicines. 2024;12:1280. doi: https://doi.org/10.3390/biomedicines12061280

12. Degnan PH, Taga ME, Goodman AL. Vitamin B 12 as a Modulator of Gut Microbial Ecology. Cell Metab. 2014;20:769–78. doi: https://doi.org/10.1016/j.cmet.2014.10.002

13. Sun W-L, Hua S, Li X-Y, Shen L, Wu H, Ji H-F. Microbially produced vitamin B12 contributes to the lipid-lowering effect of silymarin. Nat Commun. 2023;14:477. doi: https://doi.org/10.1038/s41467-023-36079-x

14. Mok KC, Sokolovskaya OM, Nicolas AM, Hallberg ZF, Deutschbauer A, et al. Identification of a Novel Cobamide Remodeling Enzyme in the Beneficial Human Gut Bacterium Akkermansia muciniphila. MBio. 2020;11. doi: https://doi.org/10.1128/mBio.02507-20

15. Belzer C, Chia LW, Aalvink S, Chamlagain B, Piironen V, et al. Microbial Metabolic Networks at the Mucus Layer Lead to Diet-Independent Butyrate and Vitamin B 12 Production by Intestinal Symbionts. MBio. 2017;8. doi: https://doi.org/10.1128/mBio.00770-17

16. Martinez-Guryn K, Hubert N, Frazier K, Urlass S, Musch MW, et al. Small Intestine Microbiota Regulate Host Digestive and Absorptive Adaptive Responses to Dietary Lipids. Cell Host Microbe. 2018;23:458-469.e5. doi: https://doi.org/10.1016/j.chom.2018.03.011

17. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7. doi: https://doi.org/10.1038/s41587-019-0209-9

18. Roth J, Lawrence J, Bobik T. COBALAMIN (COENZYME B 12 ): Synthesis and Biological Significance. Annu Rev Microbiol. 1996;50:137–81. doi: https://doi.org/10.1146/annurev.micro.50.1.137

19. Shelton AN, Seth EC, Mok KC, Han AW, Jackson SN, et al. Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. ISME J. 2019;13:789–804. doi: https://doi.org/10.1038/s41396-018-0304-9

20. Kundra P, Greppi A, Duppenthaler M, Plüss S, Pugin B, et al. Vitamin B12 analogues from gut microbes and diet differentially impact commensal propionate producers of the human gut. Front Nutr. 2024;11. doi: https://doi.org/10.3389/fnut.2024.1360199

21. Liu J, Zhang D, Yang Z, Hao Y, Wang Z, et al. Wheat Alkylresorcinols Modulate Glucose Homeostasis through Improving GLP-1 Secretion in High-Fat-Diet-Induced Obese Mice. J Agric Food Chem. 2023;71:16125–36. doi: https://doi.org/10.1021/acs.jafc.3c04664

22. Liu J, Wang Y, Wang Z, Hao Y, Bai W, Wang Z, Wang J. 5‐ Heptadecylresorcinol, a Biomarker for Whole Grain Rye Consumption, Ameliorates Cognitive Impairments and Neuroinflammation in APP/PS1 Transgenic Mice. Mol Nutr Food Res. 2020;64. doi: https://doi.org/10.1002/mnfr.201901218


Дополнительные файлы

1. Figure 1. Design of the experiment.
Тема
Тип Исследовательские инструменты
Посмотреть (444KB)    
Метаданные ▾
2. Figure 2. Differences in the representation of the salvage of adenosylcobalamine from the cobinamide I pathway in the microbiome of the large intestine of mice received an SD compared to HFD+C15 (HFDar) (a) or an HFD compared to HFD+C15 (b). Unpaired t test with Welch’s correction was applied, p < 0.001.
Тема
Тип Исследовательские инструменты
Посмотреть (328KB)    
Метаданные ▾
3. Figure 7. Correlation analysis of microbe representation in the large intestine of mice received an HFD+C15. Spearman correlations are shown for: a — Akkermansia and [Ruminococcus], b — Akkermansia and Clostridium, c — Akkermansia and AF12, d — Clostridium and AF12, e — Clostridium and [Ruminococcus] genera.
Тема
Тип Исследовательские инструменты
Посмотреть (449KB)    
Метаданные ▾

Рецензия

Для цитирования:


Заболотнева А.А., Макеев М.Д., Фесенко А.В., Румянцев С.А., Шестопалов А.В. Supplementation with pentadecylresorcinol to a high-fat diet increases the predicted representation of enzymes and metabolic pathways for vitamin b12 synthesis by the gut microbiota of c57bl6 mice. Ожирение и метаболизм. 2025;22(1):4-11. https://doi.org/10.14341/omet13198

For citation:


Zabolotneva A.A., Makeev M.D., Fesenko A.V., Roumiantsev S.A., Shestopalov A.V. Supplementation with Pentadecylresorcinol to a High-Fat Diet Increases the Predicted Representation of Enzymes and Metabolic Pathways for Vitamin B12 Synthesis by the Gut Microbiota Of C57bl6 Mice. Obesity and metabolism. 2025;22(1):4-11. https://doi.org/10.14341/omet13198

Просмотров: 271


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)