Prospects for the use of grape polyphenols in patients with type 1 diabetes mellitus
https://doi.org/10.14341/omet13128
Abstract
According to epidemiological studies, the number of patients with type 1 diabetes mellitus (DM1) in the Russian Federation is 277.1 thousand people. The number of patients continues to grow, as well as the prevalence and mortality rates, especially the negative trend is the average age of those who died from DM1, in particular for the female sex for the period from 2010 to 2022 this indicator decreased from 62.1 to 56.0 years. Glycation of structural molecules of organs and tissues leads to their dysfunction and subsequent disability of the patient. Despite the development of pharmacological industry and widespread availability of insulin preparations, not all patients reach target values of glycated hemoglobin. The development of secondary disorders mediated by insulin deficiency and impaired glycemia, such as dyslipidemia, low-intensity inflammation, metabolic endotoxinemia, and oxidative stress leads to vascular channel wall damage, significantly increasing cardiovascular risk in patients with DM1. Taking into account the whole spectrum of pathogenetic disorders in patients with DM1, a promising direction is the search for additional ways of regulation, including the use of biologically active compounds contained in plant materials, and in particular polyphenols. Literature data confirm the anti-inflammatory, antioxidant and hypoglycemic effects of polyphenols. Given the wide availability of polyphenols in the diet, their multifactorial impact on metabolic pathways, these compounds are a promising tool to influence the pathogenesis of various pathologies, including DM1. In view of the above, this review focuses on the influence of plant polyphenols, in particular grape polyphenols, on the pathogenesis of DM1, and possible ways of using polyphenol-rich foods/drugs to reduce risks in patients with DM1. By analyzing the MedLine (PubMed) databases, a search was conducted using the keywords, «diabetes type 1», «polyphenols», «inflammation» and «dyslipidemia» and a search of the eLibrary library using the keywords, «diabetes type 1», «polyphenols», «inflammation» and «dyslipidemia». Most of the scientific articles presented in this literature review were published in the last 5 years. The data presented in this review suggest that grape polyphenols are a potential agent that, in combination with mainstream disease therapy, can influence the underlying pathogenetic mechanisms of DM1, leading to improved glycemic control, achievement of lipid profile targets, and reduction of oxidative stress. Further study of polyphenols contained in grapes and grapes products will make it possible to create an effective and, most importantly, safe therapeutic agent for the reduction of cardiorespiratory stress.
About the Authors
I. A. YatskovRussian Federation
Igor A. Yatskov - PhD; Department of Internal Medicine №2. Scopus Author ID: 57218873902
5/7 Lenin Boulevard street, 295051 Simferopol
Competing Interests:
none
V. A. Beloglazov
Russian Federation
Vladimir A. Beloglazov - MD, PhD, Professor; Department of Internal Medicine №2. Scopus Author ID: 7007129056.
Simferopol
Competing Interests:
none
S. Roy
Russian Federation
Sandipan Roy – student, Department of Internal Medicine №2
Simferopol
Competing Interests:
none
References
1. Dedov II, Shestakova MV, Vikulova OK, et al. Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010–2022. Diabetes mellitus. 2023;26(2):104-123. doi: https://doi.org/10.14341/DM13035
2. ElSayed NA, Aleppo G, Aroda VR, et al. Introduction and Methodology: Standards of Care in Diabetes-2023. Diabetes Care. 2023;46(Suppl 1):S1-S4. doi: https://doi.org/10.2337/dc23-Sint
3. Huang Q, Yang D, Deng H, et al. Association between Metabolic Syndrome and Microvascular Complications in Chinese Adults with Type 1 Diabetes Mellitus. Diabetes Metab J. 2022;46(1):93-103. doi: https://doi.org/10.4093/dmj.2020.0240
4. Gomes JMG, Costa JA, Alfenas RCG. Metabolic endotoxemia and diabetes mellitus: A systematic review. Metabolism. 2017;68:133-144. doi: https://doi.org/10.1016/j.metabol.2016.12.009
5. Okorokov PL, Anikhovskaia IA, Volkov IE, Yakovlev MIu. Intestinal endotoxin as a trigger of type 1 diabetes mellitus. Hum Physiol. 2011;37(2):247-249. doi: https://doi.org/10.1134/S0362119711020137
6. Li B, Pan LL, Pan X, et al. Opportunities and challenges of polyphenols and polysaccharides for type 1 diabetes intervention. Crit Rev Food Sci Nutr. 2024;64(10):2811-2823. doi: https://doi.org/10.1080/10408398.2022.2126962
7. Feldman F, Koudoufio M, Desjardins Y, et al. Efficacy of Polyphenols in the Management of Dyslipidemia: A Focus on Clinical Studies. Nutrients. 2021;13(2):672. doi: https://doi.org/10.3390/nu13020672
8. Overman A, Bumrungpert A, Kennedy A, et al. Polyphenol-rich grape powder extract (GPE) attenuates inflammation in human macrophages and in human adipocytes exposed to macrophage-conditioned media. Int J Obes (Lond). 2010;34(5):800-808. doi: https://doi.org/10.1038/ijo.2009.296
9. Sarkhosh-Khorasani S, Sangsefidi ZS, Hosseinzadeh M. The effect of grape products containing polyphenols on oxidative stress: a systematic review and meta-analysis of randomized clinical trials. Nutr J. 2021;20(1):25. doi: https://doi.org/10.1186/s12937-021-00686-5
10. Dragan S, Andrica F, Serban MC, Timar R. Polyphenols-rich natural products for treatment of diabetes. Curr Med Chem. 2015;22(1):14-22. doi: https://doi.org/10.2174/0929867321666140826115422
11. Luca SV, Macovei I, Bujor A, et al. Bioactivity of dietary polyphenols: The role of metabolites. Crit Rev Food Sci Nutr. 2020;60(4):626-659. doi: https://doi.org/10.1080/10408398.2018.1546669
12. Santos-Buelga C, González-Paramás AM, Oludemi T, et al. Plant phenolics as functional food ingredients. Adv Food Nutr Res. 2019;90:183-257. doi: https://doi.org/10.1016/bs.afnr.2019.02.012
13. Li L, Sun B. Grape and wine polymeric polyphenols: Their importance in enology. Crit Rev Food Sci Nutr. 2019;59(4):563-579. doi: https://doi.org/10.1080/10408398.2017.1381071
14. Chernousova IV, Mosolkova VE, Zajcev GP, et al. Polifenoly` vinogradnoj grozdi, kachestvenny`j i kolichestvenny`j sostav, texnologicheskij zapas. // Ximiya rastitel`nogo sy`r`ya. 2022;(3):291-300. (In Russ). doi: https://doi.org/10.14258/jcprm.2022039811
15. Avidzba AM, Kubyshkin AV, Guguchkina TI, et al. Antioksidantnaya aktivnost’ produktov pererabotki krasnyh sortov vinograda »Kaberne-Sovin’on», »Merlo», »Saperavi». Voprosy pitaniya. 2016;85(1):99-109. (In Russ). doi: https://doi.org/10.24411/0042-8833-2016-00013
16. Zaitsev GP, Mosolkova VE, Grishin YV, et al. Fenol’nye komponenty vinograda sorta Kaberne-Sovin’on vinodel’cheskih hozyajstv Kryma. Himiya rastitel’nogo syr’ya. 2015;(2):187-193. (In Russ).
17. Dai X, Ding Y, Zhang Z, et al. Quercetin and quercitrin protect against cytokine-induced injuries in RINm5F β-cells via the mitochondrial pathway and NF-κB signaling. Int J Mol Med. 2013;31(1):265-271. doi: https://doi.org/10.3892/ijmm.2012.1177
18. Miladpour B, Rasti M, Owji AA, et al. Quercetin potentiates transdifferentiation of bone marrow mesenchymal stem cells into the beta cells in vitro. J Endocrinol Invest. 2017;40(5):513-521. doi: https://doi.org/10.1007/s40618-016-0592-8
19. Kobori M, Takahashi Y, Sakurai M, et al. Quercetin suppresses immune cell accumulation and improves mitochondrial gene expression in adipose tissue of diet-induced obese mice. Mol Nutr Food Res. 2016;60(2):300-12. doi: https://doi.org/10.1002/mnfr.201500595
20. Bagheri A, Ebrahimpour S, Nourbakhsh N, et al. Protective effect of quercetin on alteration of antioxidant genes expression and histological changes in the dental pulp of the streptozotocin-diabetic rats. Arch Oral Biol. 2021;125:105088. doi: https://doi.org/10.1016/j.archoralbio.2021.105088
21. Ji X, Shi S, Liu B, et al. Bioactive compounds from herbal medicines to manage dyslipidemia. Biomed Pharmacother. 2019;118:109338. doi: https://doi.org/10.1016/j.biopha.2019.109338
22. Ren K, Jiang T, Zhao GJ. Quercetin induces the selective uptake of HDL-cholesterol via promoting SR-BI expression and the activation of the PPARγ/LXRα pathway. Food Funct. 2018;9(1):624-635. doi: https://doi.org/10.1039/c7fo01107e
23. Sun L, Li E, Wang F et al. Quercetin increases macrophage cholesterol efflux to inhibit foam cell formation through activating PPARγ-ABCA1 pathway. Int J Clin Exp Pathol. 2015;8(9):10854-10860
24. Sun CD, Zhang B, Zhang JK, et al. Cyanidin-3-glucoside-rich extract from Chinese bayberry fruit protects pancreatic β cells and ameliorates hyperglycemia in streptozotocin-induced diabetic mice. J Med Food. 2012;15(3):288-98. doi: https://doi.org/10.1089/jmf.2011.1806
25. Li C, Yang B, Xu Z, et al. Protective effect of cyanidin-3-O-glucoside on neonatal porcine islets. J Endocrinol. 2017;235(3):237-249. doi: https://doi.org/10.1530/JOE-17-0141
26. Liu Y, Wang Q, Wu K, et al. Anthocyanins’ effects on diabetes mellitus and islet transplantation. Crit Rev Food Sci Nutr. 2023;63(33):12102-12125. doi: https://doi.org/10.1080/10408398.2022.2098464
27. Jeon YD, Kang SH, Moon KH, et al. The Effect of Aronia Berry on Type 1 Diabetes In Vivo and In Vitro. J Med Food. 2018;21(3):244-253. doi: https://doi.org/10.1089/jmf.2017.3939
28. Qin Y, Xia M, Ma J, et al. Anthocyanin supplementation improves serum LDL- and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am J Clin Nutr. 2009;90(3):485-492. doi: https://doi.org/10.3945/ajcn.2009.27814
29. Zhang Z, Ding Y, Dai X, et al. Epigallocatechin-3-gallate protects pro-inflammatory cytokine induced injuries in insulin-producing cells through the mitochondrial pathway. Eur J Pharmacol. 2011;670(1):311-316. doi: https://doi.org/10.1016/j.ejphar.2011.08.033
30. Chen T-S, Liao W-Y, Huang C-W, Chang C-H. Adipose-Derived Stem Cells Preincubated with Green Tea EGCG Enhance Pancreatic Tissue Regeneration in Rats with Type 1 Diabetes through ROS/Sirt1 Signaling Regulation. International Journal of Molecular Sciences. 2022; 23(6):3165. doi: https://doi.org/10.3390/ijms23063165
31. Fu Z, Zhen W, Yuskavage J, Liu D. Epigallocatechin gallate delays the onset of type 1 diabetes in spontaneous non-obese diabetic mice. Br J Nutr. 2011;105(8):1218-1225. doi: https://doi.org/10.1017/S0007114510004824
32. Tan J, Liu H, Huang M, et al. Small molecules targeting RORγt inhibit autoimmune disease by suppressing Th17 cell differentiation. Cell Death Dis. 2020;11(8):697. doi: https://doi.org/10.1038/s41419-020-02891-2
33. Cheng H, Xu N, Zhao W, et al. (-)-Epicatechin regulates blood lipids and attenuates hepatic steatosis in rats fed high-fat diet. Mol Nutr Food Res. 2017;61(11). doi: https://doi.org/10.1002/mnfr.201700303
34. Garud MS, Kulkarni YA. Gallic acid attenuates type I diabetic nephropathy in rats. Chem Biol Interact. 2018;282:69-76. doi: https://doi.org/10.1016/j.cbi.2018.01.010
35. Patel SS, Goyal RK. Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats. Pharmacognosy Res. 2011;3(4):239-245. doi: https://doi.org/10.4103/0974-8490.89743
36. Berman AY, Motechin RA, Wiesenfeld MY, Holz MK. The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol. 2017;1:35. doi: https://doi.org/10.1038/s41698-017-0038-6
37. Chen WP, Chi TC, Chuang LM, Su MJ. Resveratrol enhances insulin secretion by blocking K(ATP) and K(V) channels of beta cells. Eur J Pharmacol. 2007;568(1-3):269-277. doi: https://doi.org/10.1016/j.ejphar.2007.04.062
38. Kaur G, Padiya R, Adela R, et al. Garlic and Resveratrol Attenuate Diabetic Complications, Loss of β-Cells, Pancreatic and Hepatic Oxidative Stress in Streptozotocin-Induced Diabetic Rats. Front Pharmacol. 2016;7:360. doi: https://doi.org/10.3389/fphar.2016.00360
39. Sedlak L, Wojnar W, Zych M, et al. Effect of Resveratrol, a Dietary-Derived Polyphenol, on the Oxidative Stress and Polyol Pathway in the Lens of Rats with Streptozotocin-Induced Diabetes. Nutrients. 2018;10(10):1423. doi: https://doi.org/10.3390/nu10101423
40. Lee SM, Yang H, Tartar DM, et al. Prevention and treatment of diabetes with resveratrol in a non-obese mouse model of type 1 diabetes. Diabetologia. 2011;54(5):1136-1146. doi: https://doi.org/10.1007/s00125-011-2064-1
41. Lee JH, Song MY, Song EK, et al. Overexpression of SIRT1 protects pancreatic beta-cells against cytokine toxicity by suppressing the nuclear factor-kappaB signaling pathway. Diabetes. 2009;58(2):344-351. doi: https://doi.org/10.2337/db07-1795
42. Movahed A, Raj P, Nabipour I, et al. Efficacy and Safety of Resveratrol in Type 1 Diabetes Patients: A Two-Month Preliminary Exploratory Trial. Nutrients. 2020;12(1):161. doi: https://doi.org/10.3390/nu12010161
43. Al-Hussaini H, Kittaneh RS, Kilarkaje N. Effects of trans-resveratrol on type 1 diabetes-induced up-regulation of apoptosis and mitogen-activated protein kinase signaling in retinal pigment epithelium of Dark Agouti rats. Eur J Pharmacol. 2021;904:174167. doi: https://doi.org/10.1016/j.ejphar.2021.174167
44. Zhao Y, Song W, Wang Z, et al. Resveratrol attenuates testicular apoptosis in type 1 diabetic mice: Role of Akt-mediated Nrf2 activation and p62-dependent Keap1 degradation. Redox Biol. 2018;14:609-617. doi: https://doi.org/10.1016/j.redox.2017.11.007
45. Simas JN, Mendes TB, Fischer LW, et al. Resveratrol improves sperm DNA quality and reproductive capacity in type 1 diabetes. Andrology. 2021;9(1):384-399. doi: https://doi.org/10.1111/andr.12891
46. Francisco V, Figueirinha A, Costa G, et al. The Flavone Luteolin Inhibits Liver X Receptor Activation. J Nat Prod. 2016;79(5):1423-1428. doi: https://doi.org/10.1021/acs.jnatprod.6b00146
47. Gavin PG, Mullaney JA, Loo D, et al. Intestinal Metaproteomics Reveals Host-Microbiota Interactions in Subjects at Risk for Type 1 Diabetes. Diabetes Care. 2018;41(10):2178-2186. doi: https://doi.org/10.2337/dc18-0777
48. Del Chierico F, Rapini N, Deodati A, et al. Pathophysiology of Type 1 Diabetes and Gut Microbiota Role. International Journal of Molecular Sciences. 2022;23(23):14650. doi: https://doi.org/10.3390/ijms232314650
49. Calabrese CM, Valentini A, Calabrese G. Gut Microbiota and Type 1 Diabetes Mellitus: The Effect of Mediterranean Diet. Frontiers in Nutrition. 2021;7. doi: https://doi.org/10.3389/fnut.2020.612773
50. Aw W, Fukuda S. Understanding the role of the gut ecosystem in diabetes mellitus. Journal of Diabetes Investigation. 2017;9(1):5-12. doi: https://doi.org/10.1111/jdi.12673
51. Ahuja M, Schwartz DM, Tandon M, et al. Orai1-Mediated Antimicrobial Secretion from Pancreatic Acini Shapes the Gut Microbiome and Regulates Gut Innate Immunity. Cell Metabolism. 2017;25(3):635-646. doi: https://doi.org/10.1016/j.cmet.2017.02.007
52. Wang S, Kai L, Zhu L, et al. Cathelicidin-WA Protects Against LPS-Induced Gut Damage Through Enhancing Survival and Function of Intestinal Stem Cells. Front Cell Dev Biol. 2021;9. doi: https://doi.org/10.3389/fcell.2021.685363
53. Liang W, Enée E, Andre-Vallee C, et al. Intestinal Cathelicidin Antimicrobial Peptide Shapes a Protective Neonatal Gut Microbiota Against Pancreatic Autoimmunity. Gastroenterology. 2022;162(4):1288-1302.e16. doi: https://doi.org/10.1053/j.gastro.2021.12.272
54. de Kort S, Keszthelyi D, Masclee AAM. Leaky gut and diabetes mellitus: what is the link? Obesity Reviews. 2011;12(6):449-458. doi: https://doi.org/10.1111/j.1467-789x.2010.00845.x
55. Sapone A, de Magistris L, Pietzak M, et al. Zonulin Upregulation Is Associated With Increased Gut Permeability in Subjects With Type 1 Diabetes and Their Relatives. Diabetes. 2006;55(5):1443-1449. doi: https://doi.org/10.2337/db05-1593
56. Wood Heickman LK, DeBoer MD, Fasano A. Zonulin as a potential putative biomarker of risk for shared type 1 diabetes and celiac disease autoimmunity. Diabetes/Metabolism Research and Reviews. 2020;36(5). doi: https://doi.org/10.1002/dmrr.3309
57. Fasano A. All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Research. 2020;9:69. doi: https://doi.org/10.12688/f1000research.20510.1
58. Cui Y, Oh YJ, Lim J, et al. AFM study of the differential inhibitory effects of the green tea polyphenol (−)-epigallocatechin-3-gallate (EGCG) against Gram-positive and Gram-negative bacteria. Food Microbiology. 2012;29(1):80–87. doi: 10.1016/j.fm.2011.08.019
59. Vance SH, Tucci M, Benghuzzi H. Evaluation of the antimicrobial efficacy of green tea extract (EGCG) against streptococcus pyogenes in vitro. Biomedical Sciences Instrumentation. 2011;47:177–182
60. Lacombe A, Wu VCH, et al. Antimicrobial action of the American cranberry constituents; phenolics, anthocyanins, and organic acids, against Escherichia coli O157:H7. International Journal of Food Microbiology. 2010;139(1-2):102–107. doi: https://doi.org/10.1016/j.ijfoodmicro.2010.01.035
61. Puupponen-Pimiä R, Nohynek L, Alakomi H-L, Oksman-Caldentey K-M. The action of berry phenolics against human intestinal pathogens. BioFactors. 2005;23(4):243–251. doi: https://doi.org/10.1002/biof.5520230410
62. Corrêa TAF, Rogero MM, Hassimotto NMA, Lajolo FM. The Two-Way Polyphenols-Microbiota Interactions and Their Effects on Obesity and Related Metabolic Diseases. Front Nutr. 2019;6:188. doi: https://doi.org/10.3389/fnut.2019.00188
63. Hervert-Hernández D, Goñi I. Dietary Polyphenols and Human Gut Microbiota: a Review. Food Reviews International. 2011;27(2):154 — 169, doi: https://doi.org/10.1080/87559129.2010.535233
64. Marín L, Miguélez EM, Villar CJ, Lombó F. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int. 2015;2015:905215. doi: https://doi.org/10.1155/2015/905215
65. Moodi V, Abedi S, Esmaeilpour M, et al. The effect of grapes/grape products on glycemic response: A systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2021;35(9):5053-5067. doi: https://doi.org/10.1002/ptr.7135
66. Zadnipryanyj IV, Tret’yakova OS, Kubyshkin AV, Sataeva TP. Protective effect of grapes polyphenol concentrate “Fenokor” in terms of hypoxic myocardial injury. Bulletin of Siberian Medicine. 2017;16(3):34-42. (In Russ). doi: https://doi.org/10.20538/1682-0363-2017-3-34-42
67. Tarimov CO, Subbotkin MV, Kulanova AA, et al. Comparative analysis of cardiovascular system morphofunctional disorders’ correction in a simulated metabolic syndrome. Obesity and metabolism. 2020;17(2):208-219. (In Russ.) doi: https://doi.org/10.14341/omet12296
68. Atkinson FS, Brand-Miller JC, Foster-Powell K, et al. International tables of glycemic index and glycemic load values 2021: a systematic review. Am J Clin Nutr. 2021;114(5):1625-1632. doi: https://doi.org/10.1093/ajcn/nqab233
Supplementary files
Review
For citations:
Yatskov I.A., Beloglazov V.A., Roy S. Prospects for the use of grape polyphenols in patients with type 1 diabetes mellitus. Obesity and metabolism. 2025;22(2):123-133. (In Russ.) https://doi.org/10.14341/omet13128

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).