Preview

Obesity and metabolism

Advanced search

Mineral disorders in patients with chronic liver disease. Part 1: epidemiology and pathophysiology

https://doi.org/10.14341/omet13124

Abstract

Chronic liver disease is a significant public health problem worldwide, and its consequences lead to the development of various mineral disorders, which occur in 75% of patients. Osteoporosis (up to 30% of patients) has the greatest clinical significance among the mineral disorders that develop in chronic liver disease. Fractures occur, according to different data, in 7-35% of patients. There are number of mechanisms influencing the state of mineral metabolism in chronic liver diseases: from the disturbance of vitamin D metabolism to the synthesis of pro-inflammatory cytokines and the function of intestinal microbiota. To date, these processes remain insufficiently studied: for example, aspects concerning the functioning of parathyroid glands in chronic liver diseases are not completely clear; there is no clear idea about the predominant processes in bone tissue (anti- or proresorptive). This determines the imperfection of prophylactic and therapeutic approaches in mineral disorders due to chronic liver diseases and the need for further research in this direction. The first part of this review focuses on the epidemiology and pathophysiology of mineral metabolism disorders in these conditions; the second part of the review will focus on current therapeutic approaches

About the Authors

A. M. Gorbacheva
Endocrinology Research Center
Russian Federation

Anna M. Gorbacheva, MD, PhD

11 Dm.Ulyanova street, 115478, Moscow

ResearcherID: HKO-2637-2023

 

Scopus Author ID: 57190977461


Competing Interests:

None



E. E. Bibik
Endocrinology Research Center
Russian Federation

Ekaterina E. Bibik, MD, PhD

11 Dm.Ulyanova street, 115478, Moscow

ResearcherID: AAY-3052-2020

 

Scopus Author ID: 57195679482


Competing Interests:

None



A. A. Lavreniuk
Endocrinology Research Center
Russian Federation

Anastasia A. Lavreniuk, MD

11 Dm.Ulyanova street, 115478, Moscow

ResearcherID: ABF-4392-2022

 

Scopus Author ID: 7101843976


Competing Interests:

None



A. K. Eremkina
Endocrinology Research Center
Russian Federation

Anna K. Eremkina, MD, PhD

11 Dm.Ulyanova street, 115478, Moscow

ResearcherID: R-8848-2019

 

Scopus Author ID: 57197775339


Competing Interests:

None



I. N. Tikhonov
Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

Igor N. Tikhonov, MD

ResearcherID: ABC-4408-2020

 

Scopus Author ID: 57200597669


Competing Interests:

None



N. G. Mokrysheva
Endocrinology Research Center
Russian Federation

Natalia G. Mokrysheva, MD, PhD, Professor

11 Dm.Ulyanova street, 115478, Moscow

ResearcherID: AAY-3761-2020

 

Scopus Author ID: 35269746000


Competing Interests:

None



References

1. Cheemerla S, Balakrishnan M. Global Epidemiology of Chronic Liver Disease. Clin Liver Dis (Hoboken). 2021;17(5):365-370. doi: https://doi.org/10.1002/cld.1061

2. Sepanlou SG, Safiri S, Bisignano C, et al. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;5(3). doi: https://doi.org/10.1016/S2468-1253(19)30349-8

3. Giouleme O, Vyzantiadis T, Nikolaidis N, et al. Pathogenesis of osteoporosis in liver cirrhosis. Hepatogastroenterology. 2006;53(72):938-943

4. Zheng JP, Miao HX, Zheng SW, et al. Risk factors for osteoporosis in liver cirrhosis patients measured by transient elastography. Medicine (United States). 2018;97(20). doi: https://doi.org/10.1097/MD.0000000000010645

5. Patel N, Muñoz SJ. Bone disease in cirrhosis. Clin Liver Dis (Hoboken). 2015;6(4). doi: https://doi.org/10.1002/cld.498

6. Nakchbandi IA. Osteoporosis and fractures in liver disease: Relevance, pathogenesis and therapeutic implications. World J Gastroenterol. 2014;20(28). doi: https://doi.org/10.3748/wjg.v20.i28.9427

7. Compston JE, McClung MR, Leslie WD. Osteoporosis. The Lancet. 2019;393(10169):364-376. doi: https://doi.org/10.1016/S0140-6736(18)32112-3

8. Merli M, Berzigotti A, Zelber-Sagi S, et al. EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J Hepatol. 2019;70(1). doi: https://doi.org/10.1016/j.jhep.2018.06.024

9. Leidig-Bruckner G, Hosch S, Dodidou P, et al. Frequency and predictors of osteoporotic fractures after cardiac or liver transplantation: A follow-up study. Lancet. 2001;357(9253). doi: https://doi.org/10.1016/S0140-6736(00)03641-2

10. Navasa M, Monegal A, Guañabens N, et al. Bone fractures in liver transplant patients. Rheumatology. 1994;33(1). doi: https://doi.org/10.1093/rheumatology/33.1.52

11. Topcheeva ON, Drozdov VN, Embutnieks YV, Vyazhevich YV. Mineral’naya plotnost’ kostnoj tkani u bol’nyh cirrozom pecheni // Terapevticheskaya gastroenetrologiya. 2009;8:51-55 (In Russ.)

12. Topcheeva ON. Osobennosti narusheniya mineral’noj plotnosti kostnoj tkani u bol’nyh cirrozom pecheni razlichnoj etiologii: Diss. … med. nauk. M. 2010:115 (In Russ.)

13. Kirgueva OI. Sostoyanie kostnoj tkani u muzhchin, stradayushchih cirrozom pecheni: Diss. … med. nauk. Volgograd. 2017:124 (In Russ.)

14. Ehnert S, Aspera-Werz RH, Ruoß M, et al. Hepatic Osteodystrophy- Molecular Mechanisms Proposed to Favor Its Development. Int J Mol Sci. 2019;20(10). doi: https://doi.org/10.3390/ijms20102555

15. Wintermeyer E, Ihle C, Ehnert S, et al. Crucial role of vitamin D in the musculoskeletal system. Nutrients. 2016;8(6). doi: https://doi.org/10.3390/nu8060319

16. Holick MF. Vitamin D: A D-lightful solution for health. In: Journal of Investigative Medicine. 2011;59. doi: https://doi.org/10.2310/JIM.0b013e318214ea2d

17. Nussler AK, Wildemann B, Freude T, et al. Chronic CCl4 intoxication causes liver and bone damage similar to the human pathology of hepatic osteodystrophy: A mouse model to analyse the liver-bone axis. Arch Toxicol. 2014;88(4). doi: https://doi.org/10.1007/s00204-013-1191-5

18. Hochrath K, Ehnert S, Ackert-Bicknell CL, et al. Modeling hepatic osteodystrophy in Abcb4 deficient mice. Bone. 2013;55(2). doi: https://doi.org/10.1016/j.bone.2013.03.012

19. Chongthavornvasana S, Lertudomphonwanit C, Mahachoklertwattana P, Korwutthikulrangsri M. Determination of Optimal Vitamin D Dosage in Children with Cholestasis. BMC Pediatr. 2023;23(1). doi: https://doi.org/10.1186/s12887-023-04113-y

20. Abdel-Rahman N, Sharawy MH, Megahed N, El-Awady MS. Vitamin D3 abates BDL-induced cholestasis and fibrosis in rats via regulating Hedgehog pathway. Toxicol Appl Pharmacol. 2019;380. doi: https://doi.org/10.1016/j.taap.2019.114697

21. Zhao XY, Li J, Wang JH, et al. Vitamin D serum level is associated with Child-Pugh score and metabolic enzyme imbalances, but not viral load in chronic hepatitis B patients. Medicine (United States). 2016;95(27). doi: https://doi.org/10.1097/MD.0000000000003926

22. Arteh J, Narra S, Nair S. Prevalence of vitamin D deficiency in chronic liver disease. Dig Dis Sci. 2010;55(9). doi: https://doi.org/10.1007/s10620-009-1069-9

23. DeLuca HF. History of the discovery of vitamin D and its active metabolites. Bonekey Rep. 2014;3. doi: https://doi.org/10.1038/bonekey.2013.213

24. Shinchuk L, Holick MF. Vitamin D and rehabilitation: Improving functional outcomes. Nutrition in Clinical Practice. 2007;22(3). doi: https://doi.org/10.1177/0115426507022003297

25. Booth DR, Ding N, Parnell GP, et al. Cistromic and genetic evidence that the vitamin D receptor mediates susceptibility to latitudedependent autoimmune diseases. Genes Immun. 2016;17(4):213-219. doi: https://doi.org/10.1038/gene.2016.12

26. Christensen MHE, Apalset EM, Nordbø Y, Varhaug JE, Mellgren G, Lien EA. 1,25-Dihydroxyvitamin D and the Vitamin D Receptor Gene Polymorphism Apa1 Influence Bone Mineral Density in Primary Hyperparathyroidism. PLoS One. 2013;8(2). doi: https://doi.org/10.1371/journal.pone.0056019

27. Christakos S, Dhawan P, Porta A, Mady LJ, Seth T. Vitamin D and intestinal calcium absorption. Mol Cell Endocrinol. 2011;347(1-2). doi: https://doi.org/10.1016/j.mce.2011.05.038

28. Veldurthy V, Wei R, Oz L, Dhawan P, Jeon YH, Christakos S. Vitamin D, calcium homeostasis and aging. Bone Res. 2016;4. doi: https://doi.org/10.1038/boneres.2016.41

29. Shymanskyi I, Lisakovska O, Mazanova A, Labudzynskyi D, Veliky M. Vitamin D3 modulates impaired crosstalk between RANK and glucocorticoid receptor signaling in bone marrow cells after chronic prednisolone administration. Front Endocrinol (Lausanne). 2018;9(JUN). doi: https://doi.org/10.3389/fendo.2018.00303

30. Wacker M, Holiack MF. Vitamin D-effects on skeletal and extraskeletal health and the need for supplementation. Nutrients. 2013;5(1). doi: https://doi.org/10.3390/nu5010111

31. Takahashi N, Udagawa N, Suda T. Vitamin D endocrine system and osteoclasts. Bonekey Rep. 2014;3. doi: https://doi.org/10.1038/bonekey.2014.17

32. Prié D, Forand A, Francoz C, et al. Plasma Fibroblast Growth Factor 23 Concentration Is Increased and Predicts Mortality in Patients on the Liver-Transplant Waiting List. PLoS One. 2013;8(6). doi: https://doi.org/10.1371/journal.pone.0066182

33. He X, Shen Y, Ma X, et al. The association of serum FGF23 and non-alcoholic fatty liver disease is independent of vitamin D in type 2 diabetes patients. Clin Exp Pharmacol Physiol. 2018;45(7). doi: https://doi.org/10.1111/1440-1681.12933

34. Bihari C, Lal D, Thakur M, et al. Suboptimal Level of Bone-Forming Cells in Advanced Cirrhosis are Associated with Hepatic Osteodystrophy. Hepatol Commun. 2018;2(9). doi: https://doi.org/10.1002/hep4.1234

35. Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh- Many T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: A bone parathyroid feedback loop. Am J Physiol Renal Physiol. 2010;299(4). doi: https://doi.org/10.1152/ajprenal.00360.2010

36. Silver J, Naveh-Many T. FGF23 and the parathyroid glands. Pediatric Nephrology. 2010;25(11). doi: https://doi.org/10.1007/s00467-010-1565-3

37. Fisher L, Fisher A. Vitamin D and Parathyroid Hormone in Outpatients With Noncholestatic Chronic Liver Disease. Clinical Gastroenterology and Hepatology. 2007;5(4). doi: https://doi.org/10.1016/j.cgh.2006.10.015

38. Islam MZ, Viljakainen HT, Kärkkäinen MUM, Saarnio E, Laitinen K, Lamberg-Allardt C. Prevalence of vitamin D deficiency and secondary hyperparathyroidism during winter in pre-menopausal Bangladeshi and Somali immigrant and ethnic Finnish women: associations with forearm bone mineral density. Br J Nutr. 2012;107(2):277-283. doi: https://doi.org/10.1017/S0007114511002893

39. Narayanasamy K, Karthick R, Raj AK. High Prevalent Hypovitaminosis D Is Associated with Dysregulation of Calcium-parathyroid Hormone-vitamin D Axis in Patients with Chronic Liver Diseases. J Clin Transl Hepatol. 2019;7(1):15-20. doi: https://doi.org/10.14218/JCTH.2018.00018

40. Duarte MP, Farias ML, Coelho HS, et al. Calcium-parathyroid hormone-vitamin D axis and metabolic bone disease in chronic viral liver disease. J Gastroenterol Hepatol. 2001;16(9):1022-1027. doi: https://doi.org/10.1046/j.1440-1746.2001.02561.x

41. Marek B, Kajdaniuk D, Niedziołka D, et al. Growth hormone/insulinlike growth factor-1 axis, calciotropic hormones and bone mineral density in young patients with chronic viral hepatitis. Endokrynol Pol. 2015;66(1):22-29. doi: https://doi.org/10.5603/EP.2015.0005

42. Corey RL, Whitaker MD, Crowell MD, et al. Vitamin D deficiency, parathyroid hormone levels, and bone disease among patients with end-stage liver disease and normal serum creatinine awaiting liver transplantation. Clin Transplant. 2014;28(5). doi: https://doi.org/10.1111/ctr.12351

43. Dibble JB, Sheridan P, Hampshire R, Hardy GJ, Losowsky MS. Evidence for secondary hyperparathyroidism in the osteomalacia associated with chronic liver disease. Clin Endocrinol (Oxf ). 1981;15(4):373-383. doi: https://doi.org/10.1111/j.1365-2265.1981.tb00677.x

44. Gerhardt A, Greenberg A, Reilly JJ, Van Thiel DH. Hypercalcemia. A complication of advanced chronic liver disease. Arch Intern Med. 1987;147(2):274-277. doi: https://doi.org/10.1001/archinte.147.2.274

45. Compston JE, Greer S, Skingle SJ, et al. Early increase in plasma parathyroid hormone levels following liver transplantation. J Hepatol. 1996;25(5):715-718. doi: https://doi.org/10.1016/s0168-8278(96)80243-1

46. Prytuła A, Walle J Vande, Van Vlierberghe H, et al. Factors associated with 1,25-dihydroxyvitamin D3 concentrations in liver transplant recipients: a prospective observational longitudinal study. Endocrine. 2016;52(1):93-102. doi: https://doi.org/10.1007/s12020-015-0757-9

47. Klein GL, Soriano H, Shulman RJ, Levy M, Jones G, Langman CB. Hepatic osteodystrophy in chronic cholestasis: evidence for a multifactorial etiology. Pediatr Transplant. 2002;6(2):136-140. doi: https://doi.org/10.1034/j.1399-3046.2002.01060.x

48. Marie PJ, Kassem M. Osteoblasts in osteoporosis: Past, emerging, and future anabolic targets. Eur J Endocrinol. 2011;165(1). doi: https://doi.org/10.1530/EJE-11-0132

49. Ruiz-Gaspà S, Martinez-Ferrer A, Guañabens N, et al. Effects of bilirubin and sera from jaundiced patients on osteoblasts: Contribution to the development of osteoporosis in liver diseases. Hepatology. 2011;54(6). doi: https://doi.org/10.1002/hep.24605

50. Nuti R, Brandi ML, Checchia G, et al. Guidelines for the management of osteoporosis and fragility fractures. Intern Emerg Med. 2019;14(1). doi: https://doi.org/10.1007/s11739-018-1874-2

51. Delgado-Calle J, Sato AY, Bellido T. Role and mechanism of action of sclerostin in bone. Bone. 2017;96. doi: https://doi.org/10.1016/j.bone.2016.10.007

52. Rhee Y, Kim WJ, Han KJ, Lim SK, Kim SH. Effect of liver dysfunction on circulating sclerostin. J Bone Miner Metab. 2014;32(5). doi: https://doi.org/10.1007/s00774-013-0524-z

53. Reid IR. Targeting Sclerostin in Postmenopausal Osteoporosis: Focus on Romosozumab and Blosozumab. BioDrugs. 2017;31(4). doi: https://doi.org/10.1007/s40259-017-0229-2

54. Guañabens N, Parés A. Osteoporosis in chronic liver disease. Liver International. 2018;38(5). doi: https://doi.org/10.1111/liv.13730

55. Kimura K, Terasaka T, Iwata N, et al. Combined effects of androgen and growth hormone on osteoblast marker expression in mouse C2C12 and MC3T3-E1 cells induced by bone morphogenetic protein. J Clin Med. 2017;6(1). doi: https://doi.org/10.3390/jcm6010006

56. Qiu T, Crane JL, Xie L, Xian L, Xie H, Cao X. IGF-I induced phosphorylation of PTH receptor enhances osteoblast to osteocyte transition. Bone Res. 2018;6(1). doi: https://doi.org/10.1038/s41413-017-0002-7

57. Guerra-Menéndez L, Sádaba MC, Puche JE, et al. IGF-I increases markers of osteoblastic activity and reduces bone resorption via osteoprotegerin and RANK-ligand. J Transl Med. 2013;11(1). doi: https://doi.org/10.1186/1479-5876-11-271

58. Krishnan V. Regulation of bone mass by Wnt signaling. Journal of Clinical Investigation. 2006;116(5):1202-1209. doi: https://doi.org/10.1172/JCI28551

59. Nasu M, Sugimoto T, Chihara M, Hiraumi M, Kurimoto F, Chihara K. Effect of natural menopause on serum levels of IGF-I and IGFbinding proteins: Relationship with bone mineral density and lipid metabolism in perimenopausal women. Eur J Endocrinol. 1997;136(6). doi: https://doi.org/10.1530/eje.0.1360608

60. de la Garza RG, Morales-Garza LA, Martin-Estal I, Castilla-Cortazar I. Insulin-Like Growth Factor-1 Deficiency and Cirrhosis Establishment. J Clin Med Res. 2017;9(4). doi: https://doi.org/10.14740/jocmr2761w

61. Cemborain A, Castilla-Cortázar I, García M, et al. Osteopenia in rats with liver cirrhosis: Beneficial effects of IGF-I treatment. J Hepatol. 1998;28(1). doi: https://doi.org/10.1016/S0168-8278(98)80211-0

62. Adamek A, Kasprzak A. Insulin-like growth factor (IGF) system in liver diseases. Int J Mol Sci. 2018;19(5). doi: https://doi.org/10.3390/ijms19051308

63. Golds G, Houdek D, Arnason T. Male Hypogonadism and Osteoporosis: The Effects, Clinical Consequences, and Treatment of Testosterone Deficiency in Bone Health. Int J Endocrinol. 2017;2017. doi: https://doi.org/10.1155/2017/4602129

64. Seeman E. The structural and biomechanical basis of the gain and loss of bone strength in women and men. Endocrinol Metab Clin North Am. 2003;32(1). doi: https://doi.org/10.1016/S0889-8529(02)00078-6

65. Naseem S, Hussain T, Manzoor S. Interleukin-6: A promising cytokine to support liver regeneration and adaptive immunity in liver pathologies. Cytokine Growth Factor Rev. 2018;39. doi: https://doi.org/10.1016/j.cytogfr.2018.01.002

66. Wu Q, Zhou X, Huang D, Ji Y, Kang F. IL-6 enhances osteocytemediated osteoclastogenesis by promoting JAK2 and RANKL activity in vitro. Cellular Physiology and Biochemistry. 2017;41(4). doi: https://doi.org/10.1159/000465455

67. Nakchbandi IA, Mitnick MA, Lang R, Gundberg C, Kinder B, Insogna K. Circulating levels of interleukin-6 soluble receptor predict rates of bone loss in patients with primary hyperparathyroidism. Journal of Clinical Endocrinology and Metabolism. 2002;87(11). doi: https://doi.org/10.1210/jc.2001-011814

68. Blaschke M, Koepp R, Cortis J, et al. IL-6, IL-1β, and TNF-α only in combination influence the osteoporotic phenotype in Crohn’s patients via bone formation and bone resorption. Advances in Clinical and Experimental Medicine. 2018;27(1). doi: https://doi.org/10.17219/acem/67561

69. Norris CA, He M, Kang LI, et al. Synthesis of IL-6 by hepatocytes is a normal response to common hepatic stimuli. PLoS One. 2014;9(4). doi: https://doi.org/10.1371/journal.pone.0096053

70. Shimada M, Matsumata T, Taketomi A, et al. The role of interleukin-6, interleukin-16, tumor necrosis factor-alpha and endotoxin in hepatic resection. Hepatogastroenterology. 1995;42(5):691-697

71. Hernandez-Barragan A, Montes-de-Oca-Angeles D, Lemus- Peña M, et al. Serum determination of IL-1β and IL-1RA in patients with chronic liver diseases. Ann Hepatol. 2022;27. doi: https://doi.org/10.1016/j.aohep.2022.100864

72. Ruscitti P, Cipriani P, Carubbi F, et al. The role of IL-1β in the bone loss during rheumatic diseases. Mediators Inflamm. 2015;2015. doi: https://doi.org/10.1155/2015/782382

73. Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 2018;281(1). doi: https://doi.org/10.1111/imr.12621

74. Nakamura I, Jimi E. Regulation of Osteoclast Differentiation and Function by Interleukin-1. Vitam Horm. 2006;74. doi: https://doi.org/10.1016/S0083-6729(06)74015-8

75. Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: Interactions of the bone and immune system. Endocr Rev. 2008;29(4). doi: https://doi.org/10.1210/er.2007-0038

76. Zhao S, Jiang J, Jing Y, et al. The concentration of tumor necrosis factor-α determines its protective or damaging effect on liver injury by regulating Yap activity. Cell Death Dis. 2020;11(1). doi: https://doi.org/10.1038/s41419-020-2264-z

77. Zhao B, Grimes SN, Li S, Hu X, Ivashkiv LB. TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J. Journal of Experimental Medicine. 2012;209(2). doi: https://doi.org/10.1084/jem.20111566

78. Boyce BF, Li P, Yao Z, et al. TNFα and pathologic bone resorption. Keio Journal of Medicine. 2005;54(3). doi: https://doi.org/10.2302/kjm.54.127

79. Stojic J, Kukla M, Grgurevic I. The Intestinal Microbiota in the Development of Chronic Liver Disease: Current Status. Diagnostics. 2023;13(18). doi: https://doi.org/10.3390/diagnostics13182960

80. Liu J, Yang D, Wang X, et al. Gut Microbiota Targeted Approach in the Management of Chronic Liver Diseases. Front Cell Infect Microbiol. 2022;12. doi: https://doi.org/10.3389/fcimb.2022.774335

81. Jeong H, Kim D. Bone Diseases in Patients with Chronic Liver Disease. Int J Mol Sci. 2019;20(17):4270. doi: https://doi.org/10.3390/ijms20174270

82. Yang YJ, Kim DJ. An overview of the molecular mechanisms contributing to musculoskeletal disorders in chronic liver disease: Osteoporosis, sarcopenia, and osteoporotic sarcopenia. Int J Mol Sci. 2021;22(5):1-33. doi: https://doi.org/10.3390/ijms22052604

83. Sumida K, Shrestha P, Mallisetty Y, et al. Incident Diuretic Use and Subsequent Risk of Bone Fractures: A Large Nationwide Observational Study of US Veterans. Mayo Clin Proc. 2024;99(6):913-926. doi: https://doi.org/10.1016/j.mayocp.2023.09.018

84. van der Burgh AC, Oliai Araghi S, Zillikens MC, et al. The impact of thiazide diuretics on bone mineral density and the trabecular bone score: the Rotterdam Study. Bone. 2020;138. doi: https://doi.org/10.1016/j.bone.2020.115475


Supplementary files

1. Figure 1: Vitamin D metabolism in normal state and in chronic liver disease. Explanations in the text.
Subject
Type Исследовательские инструменты
View (781KB)    
Indexing metadata ▾

Review

For citations:


Gorbacheva A.M., Bibik E.E., Lavreniuk A.A., Eremkina A.K., Tikhonov I.N., Mokrysheva N.G. Mineral disorders in patients with chronic liver disease. Part 1: epidemiology and pathophysiology. Obesity and metabolism. 2024;21(4):373-381. (In Russ.) https://doi.org/10.14341/omet13124

Views: 604


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)