Preview

Obesity and metabolism

Advanced search

Prospects for the use of polyphenols in patients with bronchial asthma and obesity

https://doi.org/10.14341/omet13092

Abstract

Asthma and obesity are diseases characterized by variability in the course and possible complications, the frequency of which is steadily increasing from year to year. The correlation between obesity and asthma is still an acute problem of the health care system. Representing very common diseases, they aggravate each other’s course and significantly worsen the quality of life. Polyphenols are a promising option to solve the existing problem. These low molecular weight compounds are biologically active substances capable of influencing on many metabolic processes in the body. This review demonstrates the multiple properties of these unique micronutrients, including antioxidant, anti-carcinogenic, anti-inflammatory, metabolic, neuroprotective and many others. The integration of polyphenols into the daily diet can contribute to strengthening public health, reducing the frequency and progression of socially significant diseases, and using these compounds in diseases such as asthma and obesity, according to numerous modern studies, it is possible to achieve a significant therapeutic effect at all. The purpose of this literature review is to trace the correlation between the effect of using polyphenols and changes in the course of the disease and quality of life in patients with asthma on the background of obesity, based on facts from advanced sources.

About the Authors

V. A. Beloglazov
Order of the Red Banner of Labor S.I. Georgievsky Medical Institute V.I. Vernadsky Crimean Federal University
Russian Federation

Vladimir A. Beloglazov, MD, PhD, Professor, Department of Internal Medicine №2

5/7 Lenin Boulevard street, 295051 Simferopol


Competing Interests:

None



I. A. Yatskov
Order of the Red Banner of Labor S. I. Georgievsky Medical Institute V. I. Vernadsky Crimean Federal University
Russian Federation

Igor A. Yatskov, PhD, Department of Internal Medicine №2

5/7 Lenin Boulevard street, 295051 Simferopol


Competing Interests:

None



A. A. Moik
Order of the Red Banner of Labor S. I. Georgievsky Medical Institute V. I. Vernadsky Crimean Federal University
Russian Federation

Anastasia A. Moik, Department of Internal Medicine №2

5/7 Lenin Boulevard street, 295051 Simferopol


Competing Interests:

None



Andrey Vladimirovich Moik
Order of the Red Banner of Labor S. I. Georgievsky Medical Institute V. I. Vernadsky Crimean Federal University
Russian Federation

Andrey V. Moik, Department of Internal Medicine №2

5/7 Lenin Boulevard street, 295051 Simferopol


Competing Interests:

None



References

1. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2020. Available from: www.ginasthma.org

2. NCD Risk Factor Collaboration. Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population representative studies with 222 million children, adolescents, and adults. The Lancet. 2024. doi: https://doi.org/10.1016/S0140-6736(23)02750-2

3. Kytikova OYu, Novgorodtseva P., Antonyuk MV, et al. The role of neurotrophic growth factors in the pathophysiology of bronchial asthma associated with obesity. Bulletin of Siberian Medicine. 2021;20 (1):158–167. (In Russ.). doi: https://doi.org/10.20538/1682-0363-2021-1-158-167

4. Patrakeeva VP, Shtaborov VA. Nutrition and the state of the intestinal microflora in the formation of the metabolic syndrome. Obesity and metabolism. 2022;19(3):292-299. (In Russ.) doi: https://doi.org/10.14341/omet12893

5. Yahfoufi N, Alsadi N, Jambi M, et al. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients. 2018;10(11):1618. doi: https://doi.org/10.3390/nu10111618.

6. Cao Y, Han S, Lu H, et al. Targeting mTOR Signaling by Dietary Polyphenols in Obesity Prevention. Nutrients. 2022;14(23):5171. doi: https://doi.org/10.3390/nu14235171

7. Castro-Barquero S, Lamuela-Raventós RM, Doménech M, et al. Relationship between Mediterranean Dietary Polyphenol Intake and Obesity. Nutrients. 2018;10(10):1523-1535. doi: https://doi.org/10.3390/nu10101523

8. Bobrysheva TN, Anisimov GS, Zolotoreva MS, et al. Polyphenols as promising bioactive compounds // Voprosy pitaniia. 2023;92(1):92-107. (In Russ.) doi: https://doi.org/10.33029/0042-8833-2023-92-1-92-107

9. Miethe S, Karsonova A, Karaulov A, et al. Obesity and asthma. J Allergy Clin Immunol. 2020;146(4):685-693. doi: https://doi.org/10.1016/j.jaci.2020.08.011

10. Maniscalco M, Paris D, Melck DJ, et al. Coexistence of obesity and asthma determines a distinct respiratory metabolic phenotype. J Allergy Clin Immunol. 2017;139(5):1536-1547. doi: https://doi.org/10.1016/j.jaci.2016.08.038.

11. Haneen SD, Martin CM. Is the β3-Adrenoceptor a Valid Target for the Treatment of Obesity and/or Type 2 Diabetes? Biomolecules. 2023;13(12):1714. doi: https://doi.org/10.3390/biom13121714

12. Aditya SL, Ryota O, Tomoya H, et al. Exploring the association between asthma and chronic comorbidities: impact on clinical outcomes. Front Med (Lausanne). 2024;11:1305638. doi: https://doi.org/10.3389/fmed.2024.1305638

13. Nikos S, Erika G, Aruna C, et al. The Role of Childhood Asthma in Obesity Development: A Nationwide US Multicohort Study. Epidemiology. 2022;33(1):131-140. doi: https://doi.org/10.1097/EDE.0000000000001421

14. Contreras ZA, Chen Z, Roumeliotaki T, et al. Does early onset asthma increase childhood obesity risk? A pooled analysis of 16 European cohorts. Eur Respir J. 2018;52(3):1800504. doi: https://doi.org/10.1183/13993003.00504-2018

15. Luiz HCV, Sarah RDF, Maria da CCS, et al. Uncovering the Role of Oxidative Imbalance in the Development and Progression of Bronchial Asthma. Oxid Med Cell Longev. 2021;6692110. doi: https://doi.org/10.1155/2021/6692110

16. Ito T, Kubo M, Nagaoka K, et al. Early obesity leads to increases in hepatic arginase I and related systemic changes in nitric oxide and L-arginine metabolism in mice. J Physiol Biochem. 2018;74(1):9-16. doi: https://doi.org/10.1007/s13105-017-0597-6

17. Khramova RN, Tush EV, Khramov AA, et al. Relationship of Nutritional Status and Spirometric Parameters in Children with Bronchial Asthma. Sovrem Tekhnologii Med. 2021;12(3):12-23. doi: https://doi.org/10.17691/stm2020.12.3.02

18. Reyes-Angel J, Kaviany P, Rastogi D, et al. Obesityrelated asthma in children and adolescents. Lancet Child Adolesc Health. 2022;6(10):713-724. doi: https://doi.org/10.1016/S2352-4642(22)00185-7

19. Dixon AE, Que LQ. Obesity and Asthma. Semin Respir Crit Care Med. 2022;43(5):662-674. doi: https://doi.org/10.1055/s-0042-1742384

20. Alhammad SA, Alwadeai KS. All Types Obesity and Physical Inactivity Associated with the Risk of Activity of Daily Living Limitations Among People with Asthma. J Multidiscip Healthc. 2022;15:1573-1583. doi: https://doi.org/10.2147/JMDH.S368660

21. Dzah CS, Asante-Donyinah D, Letsyo E, et al. Dietary Polyphenols and Obesity: A Review of Polyphenol Effects on Lipid and Glucose Metabolism, Mitochondrial Homeostasis, and Starch Digestibility and Absorption. Plant Foods Hum Nutr. 2023;78(1):1-12. doi: https://doi.org/10.1007/s11130-022-01034-6

22. Ohishi T, Fukutomi R, Shoji Y, et al. The beneficial effects of principal polyphenols from green tea, coffee, wine, and curry on obesity. Molecules. 2021;26(2):453-474. doi: https://doi.org/10.3390/molecules26020453

23. de Araújo FF, de Paulo Farias D, Neri-Numa IA, et al. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem. 2021;338:127535. doi: https://doi.org/10.1016/j.foodchem.2020.127535

24. Xu H, Zhong X, Wang T, et al. (-)-Epigallocatechin-3-Gallate Reduces Perfluorodecanoic Acid-Exacerbated Adiposity and Hepatic Lipid Accumulation in High-Fat Diet-Fed Male C57BL/6J Mice. Molecules. 2023;28(23):7832. doi: https://doi.org/10.3390/molecules28237832

25. Oruganti L, Reddy Sankaran K, Dinnupati HG, et al. Anti-adipogenic and lipid-lowering activity of piperine and epigallocatechin gallate in 3T3-L1 adipocytes. Arch Physiol Biochem. 2023;129(5):1152-1159. doi: https://doi.org/10.1080/13813455.2021.1908366

26. Ngamsamer С, Sirivarasai J, Sutjarit N. The Benefits of Anthocyanins against Obesity-Induced Inflammation. Biomolecules. 2022;12(6):852. doi: https://doi.org/10.3390/biom12060852

27. Ohmae S, Akazawa S, Takahashi T, et al. Quercetin attenuates adipogenesis and fibrosis in human skeletal muscle. Biochem Biophys Res Commun. 2022;615:24-30. doi: https://doi.org/10.1016/j.bbrc.2022.05.033

28. Suh JH, Wang Y, Ho C-T. Natural dietary products and their effects on appetite control. J Agric Food Chem. 2018;66(1):36-39. doi: https://doi.org/10.1021/acs.jafc.7b05104

29. Gowd V, Karim N, Shishir MRI, et al. Dietary polyphenols to combat the metabolic diseases via altering gut microbiota. Trends in Food Science & Technology. 2019;93:81-93. doi: https://doi.org/10.1016/j.tifs.2019.09.005

30. Sousa JN, Paraíso AF, Andrade J, et al. Oral gallic acid improve liver steatosis and metabolism modulating hepatic lipogenic markers in obese mice. Exp Gerontol. 2020;134(10):110881. doi: https://doi.org/10.1016/j.exger.2020.110881

31. He X, Zheng S, Sheng Y, et al. Chlorogenic acid ameliorates obesity by preventing energy balance shift in high-fat diet induced obese mice. J Sci Food Agric. 2021;101(2):631-637. doi: https://doi.org/10.1002/jsfa.10675

32. Zhou Q, Wang Y, Han X, et al. Efficacy of resveratrol supplementation on glucose and lipid metabolism: A metaanalysis and systematic review. Front Physiol. 2022;13:795980. doi: https://doi.org/10.3389/fphys.2022.795980

33. Jiang Q, Zhang S, Gao X, et al. Resveratrol Inhibits Proliferation and Differentiation of Porcine Preadipocytes by a Novel LincRNAROFM/ miR-133b/AdipoQ Pathway. Foods. 2022;11(17):2690. doi: https://doi.org/10.3390/foods11172690

34. Koundouros N, Blenis J. Targeting mTOR in the Context of Diet and Whole-body Metabolism. Endocrinology. 2022;163(6):bqac041. doi: https://doi.org/10.1210/endocr/bqac041

35. Szwed A, Kim E, Jacinto E. Regulation and metabolic functions of mTORC1 and mTORC2. Physiol Rev. 2021;101(3):1371–1426. doi: https://doi.org/10.1152/physrev.00026.2020

36. Cani PD, Van Hul M, Lefort C, et al. Microbial regulation of organismal energy homeostasis. Nat Metab. 2019;1(1):34-36. doi: https://doi.org/10.1038/s42255-018-0017-4

37. Chávez-Carbajal A, Nirmalkar K, Pérez-Lizaur A, et al. Gut microbiota and predicted metabolic pathways in a sample of mexican women affected by obesity and obesity plus metabolic syndrome. Int J Mol Sci. 2019;20(2):438. doi: https://doi.org/10.3390/ijms20020438

38. Mulders RJ, de Git KCG, Schéle E, et al. Microbiota in obesity: interactions with enteroendocrine, immune and central nervous systems. Obes Rev. 2018;19(4):435-451. doi: https://doi.org/10.1111/obr.12661

39. Corrêa TAF, Rogero MM, Hassimotto NMA, et al. The Two-Way Polyphenols-Microbiota Interactions and Their Effects on Obesity and Related Metabolic Diseases. Front Nutr. 2019;6:188. doi: https://doi.org/10.3389/fnut.2019.00188

40. Vanweert F, Schrauwen P, Phielix E. Role of branched-chain amino acid metabolism in the pathogenesis of obesity and type 2 diabetes-related metabolic disturbances BCAA metabolism in type 2 diabetes. Nutr Diabetes. 2022;12(1):35. doi: https://doi.org/10.1038/s41387-022-00213-3

41. Leis K, Gałazka P, Kazik J, et al. Resveratrol in the treatment of asthma based on an animal model. Postepy Dermatol Alergol. 2022;39(3):433-438. doi: https://doi.org/10.5114/ada.2022.117543

42. Chauhan PS, Jaiswal A, Subhashini, et al. Combination Therapy with Curcumin Alone Plus Piperine Ameliorates Ovalbumin-Induced Chronic Asthma in Mice. Inflammation. 2018;41(5):1922-1933. doi: https://doi.org/10.1007/s10753-018-0836-1

43. Das A, Pathak MP, Pathak K, et al. Herbal medicine for the treatment of obesity-associated asthma: a comprehensive review. Front Pharmacol. 2023;14:1186060. doi: https://doi.org/10.3389/fphar.2023.1186060

44. Hosawi S. Current Update on Role of Hesperidin in Inflammatory Lung Diseases: Chemistry, Pharmacology, and Drug Delivery Approaches. Life (Basel). 2023;13(4):937. doi: https://doi.org/10.3390/life13040937

45. Muhammad H, Salahuddin Z, Akhtar T, et al. Immunomodulatory effect of glabridin in ovalbumin induced allergic asthma and its comparison with methylprednisolone in a preclinical rodent model. J Cell Biochem. 2023;124(10):1503-1515. doi: https://doi.org/10.1002/jcb.30459

46. Yang N, Shang YX. Epigallocatechin gallate ameliorates airway inflammation by regulating Treg/Th17 imbalance in an asthmatic mouse model. Int Immunopharmacol. 2019;72(3):422-428. doi: https://doi.org/10.1016/j.intimp.2019.04.044

47. Dębinska A, Sozanska B. Dietary Polyphenols-Natural Bioactive Compounds with Potential for Preventing and Treating Some Allergic Conditions. Nutrients. 2023;15(22):4823. doi: https://doi.org/10.3390/nu15224823

48. Kim CY, Kim JW, Kim JH, et al. Inner shell of the chestnut (Castanea crenatta) suppresses inflammatory responses in ovalbumin-induced allergic asthma mouse model. Nutrients. 2022;14(10):2067. doi: https://doi.org/10.3390/nu14102067

49. Huang Q, Han L, Lv R, et al. Magnolol exerts anti-asthmatic effects by regulating Janus kinase-signal transduction and activation of transcription and Notch signaling pathways and modulating Th1/Th2/Th17 cytokines in ovalbumin-sensitized asthmatic mice. Korean J Physiol Pharmacol. 2019;23(4):251-261. doi: https://doi.org/10.4196/kjpp.2019.23.4.251

50. Jafarinia M, Hosseini MS, Kasiri N, et al. Quercetin with the potential effect on allergic diseases. Allergy Asthma Clin Immunol. 2020;16:36. doi: https://doi.org/10.1186/s13223-020-00434-0


Supplementary files

1. Figure 1. The complex influence of the inflammatory, metabolic and mechanical pathways contributes to the progression of asthma in obese patients.
Subject
Type Исследовательские инструменты
View (1MB)    
Indexing metadata ▾
2. Figure 2. The effect on the transmission of mTOR signals using dietary polyphenols in the prevention of obesity.
Subject
Type Исследовательские инструменты
View (447KB)    
Indexing metadata ▾

Review

For citations:


Beloglazov V.A., Yatskov I.A., Moik A.A., Moik A.V. Prospects for the use of polyphenols in patients with bronchial asthma and obesity. Obesity and metabolism. 2024;21(4):357-364. (In Russ.) https://doi.org/10.14341/omet13092

Views: 579


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)