Preview

Obesity and metabolism

Advanced search

1166A>C polymorphism of the AGTR1 gene as a marker metabolic disorders in the North residents

https://doi.org/10.14341/omet12986

Abstract

BACKGROUND: dyslipidemia is currently considered to be one of cardiovascular risk factors. Angiotensin II receptor type I (AGTR1) genetic polymorphisms are known as candidate genes for hypertension, diabetes, as well as for diabetes and obesity complications. Until now, there are not much data on how 1166A>C (rs5186) polymorphism of the AGTR1 gene correlates with Northerners’ carbohydrate and lipid metabolism disorders. In addition, the data are contradictory. Following on from this, we see it is relevant to study the subject.

AIM: this research assessed variants of 1166A>C (rs5186) polymorphism of the AGTR1 gene as a predictor of dyslipidemia, carbohydrate metabolism disorders, overweight, and hypertension.

MATERIALS AND METHODS: the North residents from Magadan Region, Caucasian by ethnicity, aged from 24 to 56 (average age 43.7± 1.4 yrs) participated in the survey. By real-time polymerase chain reaction we determined the single nucleotide polymorphism of the AGTR1 (rs5186) gene. We also analyzed physical development and cardiovascular variables as well as the concentrations of glucose, insulin, glycosylated hemoglobin, C-reactive protein, total cholesterol, triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. The insulin resistance index and the atherogenicity coefficient were calculated using standard methods.

RESULTS: the examined subjects were one hundred and one volunteers. According to the results of genetic analysis, 55 people were assigned to the group of homozygotes for the wild type (AA) and 46 people were assigned to the group of the AGTR1*C allele variant carriers (heterozygotes and homozygotes AC+CC). Our findings contributed to the evidence on more unfavorable lipid pictures showed by the AGTR1*C allele variant carriers: significantly high values of total cholesterol (5,77±0,11, р=0.045), low-density lipoproteins (3,87±0,09, р=0.009), triglycerides (1,43±0,06, р=0.035), and atherogenicity coefficient (3,61±0,10, р=0.001), along with significantly low values of high-density lipoproteins (1,30±0,03, р=0,008). The above indicators were observed as opposed to significantly high fasting glycemia (5,74±0,14, р=0.006) and glycosylated hemoglobin (5,74±0,09, р=0.001) exhibited by the AA homozygotes subjects whose indices could be defined as the state of prediabetes. No intergroup differences were found in anthropometric or cardiovascular variables.

CONCLUSION: thus, we could see impairments in the lipid pictures of the AGTR1*С polymorphic variant carriers along with the optimization of carbohydrate metabolism and no effect on the blood pressure or anthropometric characteristics.

About the Authors

I. N. Bezmenova
Scientific Research Center “Arktika”, Far East Branch of the Russian Academy of Sciences
Russian Federation

Irina N. Bezmenova - PhD in biology; Researcher ID: ABB-8682-2021; Scopus Author ID: 24171276000.

24 Karl Marx Аvenue, 685000 Magadan


Competing Interests:

The authors declare the absence of obvious and potential conflicts of interest related to the content of this article.



I. V. Averyanova
Scientific Research Center “Arktika”, Far East Branch of the Russian Academy of Sciences
Russian Federation

=

Inessa V. Averyanova - PhD in biology; ResearcherID: AAR-9371-2020; Scopus Author ID: 57009034300.

Magadan


Competing Interests:

The authors declare the absence of obvious and potential conflicts of interest related to the content of this article.



References

1. Stein R, Ferrari F, Scolari F. Genetics, dyslipidemia, and cardiovascular disease: New insights. Curr Cardiol Rep. 2019;21(8):68. doi: https://doi.org/10.1007/s11886-019-1161-5

2. Jacobson TA, Maki KC, Orringer CE et al. National Lipid Association recommendations for patient-centered management of dyslipidemia: part 2. J Clin Lipidol. 2015;9(6):S1-S122. doi: https://doi.org/10.1016/j.jacl.2015.09.002.

3. whogis.com [Интернет]. Сердечно-сосудистые заболевания. Информационный бюллетень ВОЗ. [whogis. com [Internet]. Serdechno-sosudistye zabolevaniia. Informatsionnyi biulleten’ VOZ. (In Russ.)]. Доступно по: http://www.whogis.com/mediacentre/factsheets/fs317/ru. Ссылка активна на 20.03.2023.

4. Boiko ER, Maksimov AL, Godovykh TV, Bichkaeva FA. Osnovnye aspekty metabolicheskoi adaptatsii cheloveka na Severe. Chelovek na Severe: sistemnye mekhanizmy adaptatsii. Magadan: SVNTs DVO RAN; 2007. (In Russ.).

5. Averyanova IV. Occurrence of metabolic syndrome components in northerners. Russ Clin Lab Diagnostics. 2022;67(8):444-450. (In Russ.)]. doi: https://doi.org/10.51620/0869-2084-2022-67-8-444-450

6. Wray NR, Goddard ME, Visscher PM. Prediction of individual genetic risk to disease from genome-wide association studies. Genome Res. 2007;17(10):1520-1528. doi: https://doi.org/10.1101/gr.6665407

7. The National Center for Biotechnology Information [Internet]. Available from: https://www.ncbi.nlm.nih.gov/snp [cited 2023 Mar 23].

8. Semianiv MM, Sydorchuk LP, Dzhuryak VS, et al. Association of AGTR1 (rs5186), VDR (rs2228570) genes polymorphism with blood pressure elevation in patients with essential arterial hypertension. J Med Life. 2021;14(6):782-789. doi: https://doi.org/10.25122/jml-2021-0018

9. Mulerova TA, Tsygankova DP, Ogarkov MYu. Polymorphic variants of ACE, AGT, AGTR1, MTHFR and NOS3 candidate genes connected with arterial hypertension as part of the metabolic syndrome among the shor people. Obesity and metabolism. 2021;18(2):190-197. (In Russ.). doi: https://doi.org/10.14341/omet12295

10. Ou H, Liu D, Zhao G, et al. Association between AT1 receptor gene polymorphism and left ventricular hypertrophy and arterial stiffness in essential hypertension patients: a prospective cohort study. BMC Cardiovasc Disord. 2022;22(1):571. doi: https://doi.org/10.1186/s12872-022-03024-7

11. Ahluwalia TS, Ahuja M, Rai TS, et al. ACE variants interact with the RAS pathway to confer risk and protection against type 2 diabetic nephropathy. DNA Cell Biol. 2009;28(3):141-150. doi: https://doi.org/10.1089/dna.2008.0810

12. Shah VN, Cheema BS, Sharma R, et al. ACACβ gene (rs2268388) and AGTR1 gene (rs5186) polymorphism and the risk of nephropathy in Asian Indian patients with type 2 diabetes. Mol Cell Biochem. 2013;372(1-2):191-198. doi: https://doi.org/10.1007/s11010-012-1460-2

13. Prasad P, Tiwari AK, Kumar KP, et al. Chronic renal insufficiency among Asian Indians with type 2 diabetes: I. Role of RAAS gene polymorphisms. BMC Med Genet. 2006;7(1):42. doi: https://doi.org/10.1186/1471-2350-7-42

14. Razbekova M, Issanov A, Chan MY, et al. Genetic factors associated with obesity risks in a Kazakhstani population. BMJ Nutr Prev Health. 2021;4(1):90-101. doi: https://doi.org/10.1136/bmjnph-2020-000139

15. Procopciuc LM, Sitar-Tгut A, Pop D, et al. Renin angiotensin system polymorphisms in patients with metabolic syndrome (MetS). Eur J Intern Med. 2010;21(5):414-418. doi: https://doi.org/10.1016/j.ejim.2010.06.001

16. Abd El-Aziz TA, Mohamed RH, Rezk NA. Association of angiotensin II type I and type II receptor genes polymorphisms with the presence of premature coronary disease and metabolic syndrome. Mol Biol Rep. 2014;41(2):1027-1033. doi: https://doi.org/10.1007/s11033-013-2947-y

17. Matthews DR, Hosker JP, Rudenski AS et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-419. doi: https://doi.org/10.1007/BF00280883.

18. Klimov AN, Nikul’cheva NG. Obmen lipidov i lipoproteidov i ego narushenie: rukovodstvo dlya vrachei. Saint Petersburg: Piter Kom; 1999. (In Russ).

19. Kukharchuk VV, Ezhov MV, Sergienko IV, et al. Diagnostics and correction of lipid metabolism disorders in order to prevent and treat of atherosclerosis Russian recommendations VII revision. The Journal of Atherosclerosis and Dyslipidemias. 2020;1(38):7-40. (In Russ.). doi: https://doi.org/10.34687/2219-8202.JAD.2020.01.0002

20. NCEP National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation. 2002;106(25):3143-3421. doi: https://doi.org/10.1161/circ.106.25.3143

21. Abdollahi MR, Gaunt TR, Syddall HE, et al. Angiotensin II type I receptor gene polymorphism: anthropometric and metabolic syndrome traits. J Med Genet. 2005;42(5):396-401. doi: https://doi.org/10.1136/jmg.2004.026716

22. Putnam K, Shoemaker R, Yiannikouris F, Cassis LA. The reninangiotensin system: a target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndrome. Am J Physiol Heart Circ Physiol. 2012;302(6):H1219-1230. doi: https://doi.org/10.1152/ajpheart.00796.2011.

23. Boitsov SA. Molekulyarnaya organizatsiya genov angiotenzinprevrashchayushchego fermenta i retseptorov 1-go tipa angiotenzina II i sostoyanie regionarnoi gemodinamiki pri arterial’noi gipertenzii 1-i stepeni u molodykh muzhchin. Kardiologiya. 2003;(5):37-41. (In Russ.).

24. Kretowski A, McFann K, Hokanson JE et al. Polymorphisms of the renin-angiotensin system genes predict progression of subclinical coronary atherosclerosis. Diabetes. 2007;56(3):863-871. doi: https://doi.org/10.2337/db06-1321

25. Gridin LA. Peculiarities of human adaptation reactions in the conditions of the Far North. Public Health and Life Environment. 2015;4(253):4. (In Russ.).

26. Abou Ziki MD, Mani A. Metabolic syndrome: genetic insights into disease pathogenesis. Curr Opin Lipidol. 2016;27(2):162-171. doi: https://doi.org/10.1097/MOL.0000000000000276

27. Kostyuchenko GI, Vyun OG, Kostyuchenko LA. Evaluation of hypotensive therapy efficiency in the group of neanic AGE patients in connection with polymorphism of genes associated with arterial hypertension. Zdorov’e i obrazovanie v XXI veke. 2017;19(10):106-108. (In Russ.).

28. Musso G, Saba F, Cassader M, et al. Angiotensin II type 1 receptor rs5186 gene variant predicts incident nafld and associated hypertension: role of dietary fat-induced pro-inflammatory cell activation. Am J Gastroenterol. 2019;114(4):607-619. doi: https://doi.org/10.14309/ajg.0000000000000154

29. Ding Y, Guo DX, Jing Y, et al. Association of PPARг and AGTR1 polymorphisms with hypertriglyceridemia in Chinese population. Biomed Environ Sci. 2018;31(8):619-622. doi: https://doi.org/10.3967/bes2018.084.

30. Prasad P, Tiwari AK, Kumar KP, et al. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2020. Diabetes Care. 2020;43(S1):S14-S31. doi: https://doi.org/10.2337/dc20-S002

31. Higashiura K, Ura N, Takada T et al. The effects of an angiotensin-converting enzyme inhibitor and an angiotensin II receptor antagonist on insulin resistance in fructose-fed rats. Am J Hypertens. 2000;13(3):290-297. doi: https://doi.org/10.1016/s0895-7061(99)00174-0

32. Savage DA, Feeney SA, Fogarty DG, Maxwell AP. Risk of developing diabetic nephropathy is not associated with synergism between the angiotensin II (type 1) receptor C1166 allele and poor glycaemic control. Nephrol Dial Transplant. 1999;14(4):891-894. doi: https://doi.org/10.1093/ndt/14.4.891.

33. Miller JA, Thai K, Scholey JW. Angiotensin II type 1 receptor gene polymorphism predicts response to losartan and angiotensin II. Kidney Int. 1999;56(6):2173-2180. doi: https://doi.org/10.1046/j.1523-1755.1999.00770.x

34. Skov J, Persson F, Frшkiжr J, Christiansen JS. Tissue Renin-Angiotensin systems: a unifying hypothesis of metabolic disease. Front Endocrinol (Lausanne). 2014;(5):23. doi: https://doi.org/10.3389/fendo.2014.00023

35. Underwood PC, Adler GK. The renin angiotensin aldosterone system and insulin resistance in humans. Curr Hypertens Rep. 2013;15(1):59-70. doi: https://doi.org/10.1007/s11906-012-0323-2

36. Shiuchi T, Iwai M, Li HS et al. Angiotensin II type-1 receptor blocker valsartan enhances insulin sensitivity in skeletal muscles of diabetic mice. Hypertension. 2004;43(5):1003-1010. doi: https://doi.org/10.1161/01.HYP.0000125142.41703.64

37. Wirtz PH, von Känel R. Psychological stress, inflammation, and coronary heart disease. Curr Cardiol Rep. 2017;19(11):111. doi: https://doi.org/10.1007/s11886-017-0919-x


Review

For citations:


Bezmenova I.N., Averyanova I.V. 1166A>C polymorphism of the AGTR1 gene as a marker metabolic disorders in the North residents. Obesity and metabolism. 2023;20(4):330-337. (In Russ.) https://doi.org/10.14341/omet12986

Views: 575


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)