Preview

Obesity and metabolism

Advanced search

Vitamin D metabolism in diabetic nephropathy

https://doi.org/10.14341/omet12943

Abstract

Diabetic nephropathy (DN) is a specific kidney involvement in diabetes mellitus (DM), caused by hemodynamic and metabolic factors. In the kidneys takes place an important step in the metabolism of vitamin D — 1α-hydroxylation, which results in the formation of its biologically active form. Reduced number of functioning nephrons in DN leads to impaired vitamin D metabolism, contributing to the development of a number of complications. In this review, we have focused in detail on both normal vitamin D metabolism and the features of vitamin D metabolism in chronic kidney disease (CKD). DN is the most common cause of CKD and, as a consequence, of kidney transplantation and one of the leading causes of cardiovascular morbidity and mortality in patients with DM. Bone mineral disorders resulting from abnormal vitamin D metabolism are also independent factors of high mortality among patients with DM. The final part of our review briefly highlights current approaches to vitamin D therapy in CKD and, in particular, in DN. It is worth noting that, despite the increasing number of patients with DN, there is currently no unified view on the use of vitamin D as a therapeutic agent in this pathology.

About the Authors

Z. V. Abilov
Endocrinology Research Centre
Russian Federation

Zaur V. Abilov - MD.

11, Dm. Ulyanova street, 117292 Moscow


Competing Interests:

Работа выполнена в соавторстве с заведующей редакцией журнала «Ожирение и метаболизм» Дзерановой Л.К., членом редакционной коллегии журнала «Ожирение и метаболизм» Пигаровой Е.А.



R. Kh. Salimkhanov
Endocrinology Research Centre
Russian Federation

Rustam Kh. Salimkhanov - MD.

Moscow


Competing Interests:

Работа выполнена в соавторстве с заведующей редакцией журнала «Ожирение и метаболизм» Дзерановой Л.К., членом редакционной коллегии журнала «Ожирение и метаболизм» Пигаровой Е.А.



A. A. Povaliaeva
Endocrinology Research Centre
Russian Federation

Alexandra A. Povaliaeva - MD, PhD.

Moscow


Competing Interests:

Работа выполнена в соавторстве с заведующей редакцией журнала «Ожирение и метаболизм» Дзерановой Л.К., членом редакционной коллегии журнала «Ожирение и метаболизм» Пигаровой Е.А.



A. Yu. Zhukov
Endocrinology Research Centre
Russian Federation

Artem Yu. Zhukov - MD.

Moscow


Competing Interests:

Работа выполнена в соавторстве с заведующей редакцией журнала «Ожирение и метаболизм» Дзерановой Л.К., членом редакционной коллегии журнала «Ожирение и метаболизм» Пигаровой Е.А.



E. A. Pigarova
Endocrinology Research Centre
Russian Federation

Ekaterina A. Pigarova - MD, PhD.

Moscow


Competing Interests:

Работа выполнена в соавторстве с заведующей редакцией журнала «Ожирение и метаболизм» Дзерановой Л.К., членом редакционной коллегии журнала «Ожирение и метаболизм» Пигаровой Е.А.



L. K. Dzeranova
Endocrinology Research Centre
Russian Federation

Larisa K. Dzeranova - MD, PhD.

Moscow


Competing Interests:

Работа выполнена в соавторстве с заведующей редакцией журнала «Ожирение и метаболизм» Дзерановой Л.К., членом редакционной коллегии журнала «Ожирение и метаболизм» Пигаровой Е.А.



L. Ya. Rozhinskaya
Endocrinology Research Centre
Russian Federation

Liudmila Ya. Rozhinskaya - MD, PhD, Professor.

Moscow


Competing Interests:

Работа выполнена в соавторстве с заведующей редакцией журнала «Ожирение и метаболизм» Дзерановой Л.К., членом редакционной коллегии журнала «Ожирение и метаболизм» Пигаровой Е.А.



References

1. Ngai M, Lin V, Wong HC, et al. Vitamin D status and its association with mineral and bone disorder in a multi-ethnic chronic kidney disease population. Clin Nephrol. 2014;82 (2014)(10):231-239. doi: https://doi.org/10.5414/CN108182

2. Gross JL, de Azevedo MJ, Silveiro SP, et al. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28(1):164-176. doi: https://doi.org/10.2337/diacare.28.1.164

3. Thomas MC, Brownlee M, Susztak K, et al. Diabetic kidney disease. Nat Rev Dis Prim. 2015;1(1):15018. doi: https://doi.org/10.1038/nrdp.2015.18

4. Afkarian M, Sachs MC, Kestenbaum B, et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 2013;24(2):302-308. doi: https://doi.org/10.1681/ASN.2012070718

5. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010 [published correction appears in Lancet. 2013;381(9867):628].Lancet. 2012;380(9859):2095-2128. doi: https://doi.org/10.1016/S0140-6736(12)61728-0

6. Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives [published correction appears in Lancet. 2013;382(9888):208]. Lancet. 2013;382(9888):260-272. doi: https://doi.org/10.1016/S0140-6736(13)60687-X

7. Mirković K, van den Born J, Navis G, de Borst MH. Vitamin D in chronic kidney disease: new potential for intervention. Curr Drug Targets. 2011;12(1):42-53. doi: https://doi.org/10.2174/138945011793591572

8. Saponaro F, Saba A, Zucchi R. An update on vitamin D metabolism. Int J Mol Sci. 2020;21(18):6573. doi: https://doi.org/10.3390/ijms21186573

9. Mitsche MA, McDonald JG, Hobbs HH, Cohen JC. Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell-type specific pathways. Elife. 2015;(4):e07999. doi: https://doi.org/10.7554/eLife.07999

10. Bikle DD. Vitamin D: production, metabolism and mechanisms of action. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext. South Dartmouth (MA): MDText. com, Inc.; 2021.

11. Miller WL, Portale AA. Vitamin D 1 alpha-hydroxylase. Trends Endocrinol Metab. 2000;11(8):315-319. doi: https://doi.org/10.1016/s1043-2760(00)00287-3

12. Holick MF. Resurrection of vitamin D deficiency and rickets. J Clin Invest. 2006;116(8):2062-2072. doi: https://doi.org/10.1172/JCI29449

13. Dusso AS, Brown AJ, Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol. 2005;289(1):F8-F28. doi: https://doi.org/10.1152/ajprenal.00336.2004

14. Hewison M, Zehnder D, Chakraverty R, Adams JS. Vitamin D and barrier function: a novel role for extra-renal 1 alphahydroxylase. Mol Cell Endocrinol. 2004;215(1-2):31-38. doi: https://doi.org/10.1016/j.mce.2003.11.017

15. Jones G, Prosser DE, Kaufmann M. 25-Hydroxyvitamin D-24hydroxylase (CYP24A1): its important role in the degradation of vitamin D. Arch Biochem Biophys. 2012;523(1):9-18. doi: https://doi.org/10.1016/j.abb.2011.11.003

16. Blau JE, Collins MT. The PTH-Vitamin D-FGF23 axis. Rev Endocr Metab Disord. 2015;16(2):165-174. doi: https://doi.org/10.1007/s11154-015-9318-z

17. Jones G, Prosser DE, Kaufmann M. Cytochrome P450-mediated metabolism of vitamin D. J Lipid Res. 2014;55(1):13-31. doi: https://doi.org/10.1194/jlr.R031534

18. Dusso A, González EA, Martin KJ. Vitamin D in chronic kidney disease. Best Pract Res Clin Endocrinol Metab. 2011;25(4):647-655. doi: https://doi.org/10.1016/j.beem.2011.05.005

19. Plum LA, Zella JB. Vitamin D compounds and diabetic nephropathy. Arch Biochem Biophys. 2012;523(1):87-94. doi: https://doi.org/10.1016/j.abb.2012.02.008

20. Dusso AS, Tokumoto M. Defective renal maintenance of the vitamin D endocrine system impairs vitamin D renoprotection: a downward spiral in kidney disease. Kidney Int. 2011;79(7):715-729. doi: https://doi.org/10.1038/ki.2010.543

21. Levin A, Bakris GL, Molitch M, et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease [published correction appears in Kidney Int. 2009;75(11):1237]. Kidney Int. 2007;71(1):31-38. doi: https://doi.org/10.1038/sj.ki.5002009

22. Larsson T, Nisbeth U, Ljunggren O, et al. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int. 2003;64(6):2272-2279. doi: https://doi.org/10.1046/j.1523-1755.2003.00328.x

23. Nigwekar SU, Tamez H, Thadhani RI. Vitamin D and chronic kidney disease-mineral bone disease (CKD-MBD). Bonekey Rep. 2014;(3):498. doi: https://doi.org/10.1038/bonekey.2013.232

24. Povaliaeva AA, Pigarova EA, Romanova AA, et al. Vitamin D-binding protein: multifunctional component of blood serum. Annals of the Russian academy of medical sciences. 2021;76(1):103-110. doi: https://doi.org/10.15690/vramn1396

25. Khan SS, Petkovich M, Holden RM, Adams MA. Megalin and vitamin D metabolism-implications in non-renal tissues and kidney disease. Nutrients. 2022;14(18):3690. doi: https://doi.org/10.3390/nu14183690

26. Hilpert J, Wogensen L, Thykjaer T, et al. Expression profiling confirms the role of endocytic receptor megalin in renal vitamin D3 metabolism. Kidney Int. 2002;62(5):1672-1681. doi: https://doi.org/10.1046/j.1523-1755.2002.00634.x

27. Mehrotra R, Kermah D, Budoff M, et al. Hypovitaminosis D in chronic kidney disease. Clin J Am Soc Nephrol. 2008;3(4):1144-1151. doi: https://doi.org/10.2215/CJN.05781207

28. Leheste JR, Rolinski B, Vorum H, et al. Megalin knockout mice as an animal model of low molecular weight proteinuria. Am J Pathol. 1999;155(4):1361-1370. doi: https://doi.org/10.1016/S0002-9440(10)65238-8

29. Liu W, Yu WR, Carling T, et al. Regulation of gp330/megalin expression by vitamins A and D. Eur J Clin Invest. 1998;28(2):100-107. doi: https://doi.org/10.1046/j.1365-2362.1998.00253.x

30. Nielsen R, Christensen EI, Birn H. Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease. Kidney Int. 2016;89(1):58-67. doi: https://doi.org/10.1016/j.kint.2015.11.007

31. Nykjaer A, Fyfe JC, Kozyraki R, et al. Cubilin dysfunction causes abnormal metabolism of the steroid hormone 25(OH) vitamin D(3). Proc Natl Acad Sci U S A. 2001;98(24):13895-13900. doi: https://doi.org/10.1073/pnas.241516998

32. Usatii M, Rousseau L, Demers C, et al. Parathyroid hormone fragments inhibit active hormone and hypocalcemia-induced 1,25(OH)2D synthesis. Kidney Int. 2007;72(11):1330-1335. doi: https://doi.org/10.1038/sj.ki.5002532

33. Chen W, Roncal-Jimenez C, Lanaspa M, et al. Uric acid suppresses 1 alpha hydroxylase in vitro and in vivo. Metabolism. 2014;63(1):150-160. doi: https://doi.org/10.1016/j.metabol.2013.09.018

34. Mauer M, Doria A. Uric acid and diabetic nephropathy risk. Contrib Nephrol. 2018;(192):103-109. doi: https://doi.org/10.1159/000484284

35. Michaud J, Naud J, Ouimet D, et al. Reduced hepatic synthesis of calcidiol in uremia. J Am Soc Nephrol. 2010;21(9):1488-1497. doi: https://doi.org/10.1681/ASN.2009080815

36. Zehnder D, Bland R, Williams MC, et al. Extrarenal expression of 25-hydroxyvitamin d(3)-1 alphahydroxylase. J Clin Endocrinol Metab. 2001;86(2):888-894. doi: https://doi.org/10.1210/jcem.86.2.7220

37. Xiao X, Wang Y, Hou Y, et al. Vitamin D deficiency and related risk factors in patients with diabetic nephropathy. J Int Med Res. 2016;44(3):673-684. doi: https://doi.org/10.1177/0300060515593765

38. Derakhshanian H, Shab-Bidar S, Speakman JR, Nadimi H, Djafarian K. Vitamin D and diabetic nephropathy: A systematic review and meta-analysis. Nutrition. 2015;31(10):1189-1194. doi: https://doi.org/10.1016/j.nut.2015.04.009

39. Usluogullari CA, Balkan F, Caner S, et al. The relationship between microvascular complications and vitamin D deficiency in type 2 diabetes mellitus. BMC Endocr Disord. 2015;15(1):33. doi: https://doi.org/10.1186/s12902-015-0029-y

40. Hong SH, Kim YB, Choi HS, et al. Association of Vitamin D deficiency with diabetic nephropathy. Endocrinol Metab (Seoul). 2021;36(1):106-113. doi: https://doi.org/10.3803/EnM.2020.826

41. de Boer IH, Sachs MC, Cleary PA, et al. Circulating vitamin D metabolites and kidney disease in type 1 diabetes. J Clin Endocrinol Metab. 2012;97(12):4780-4788. doi: https://doi.org/10.1210/jc.2012-2852

42. Senyigit A. The association between 25-hydroxy vitamin D deficiency and diabetic complications in patients with type 2 diabetes mellitus. Diabetes Metab Syndr. 2019;13(2):1381-1386. doi: https://doi.org/10.1016/j.dsx.2019.01.043

43. Zhao WJ, Xia XY, Yin J. Relationship of serum vitamin D levels with diabetic microvascular complications in patients with type 2 diabetes mellitus. Chin Med J (Engl). 2021;134(7):814-820. doi: https://doi.org/10.1097/CM9.0000000000001364

44. Xiao X, Wang Y, Hou Y, et al. Vitamin D deficiency and related risk factors in patients with diabetic nephropathy. J Int Med Res. 2016;44(3):673-684. doi: https://doi.org/10.1177/0300060515593765

45. Fernández-Juárez G, Luño J, Barrio V, et al. 25 (OH) vitamin D levels and renal disease progression in patients with type 2 diabetic nephropathy and blockade of the renin-angiotensin system. Clin J Am Soc Nephrol. 2013;8(11):1870-1876. doi: https://doi.org/10.2215/CJN.00910113

46. Fan L, Zhang Y, Zhu J, et al. Association of vitamin D deficiency with diabetic peripheral neuropathy and diabetic nephropathy in Tianjin, China. Asia Pac J Clin Nutr. 2018;27(3):599-606. doi: https://doi.org/10.6133/apjcn.062017.11

47. Ucak S, Sevim E, Ersoy D, et al. Evaluation of the relationship between microalbuminuria and 25-(OH) vitamin D levels in patients with type 2 diabetes mellitus. Aging Male. 2019;22(2):116-120. doi: https://doi.org/10.1080/13685538.2018.1479385

48. Jamal Shahwan M, Hassan NAG, Shaheen RA. Assessment of kidney function and associated risk factors among type 2 diabetic patients. Diabetes Metab Syndr. 2019;13(4):2661-2665. doi: https://doi.org/10.1016/j.dsx.2019.07.025

49. Ali MI, Fawaz LA, Sedik EE, et al. Vitamin D status in diabetic patients (type 2) and its relation to glycemic control & diabetic nephropathy. Diabetes Metab Syndr. 2019;13(3):1971-1973. doi: https://doi.org/10.1016/j.dsx.2019.04.040

50. Mirković K, Doorenbos CR, Dam WA, et al. Urinary vitamin D binding protein: a potential novel marker of renal interstitial inflammation and fibrosis. PLoS One. 2013;8(2):e55887. doi: https://doi.org/10.1371/journal.pone.0055887

51. Aljack H, Abdalla M, Idris O, Ismail A. Vitamin D deficiency increases risk of nephropathy and cardiovascular diseases in Type 2 diabetes mellitus patients. J Res Med Sci. 2019;24(1):47. doi: https://doi.org/10.4103/jrms.JRMS_303_18

52. Derakhshanian H, Shab-Bidar S, Speakman JR, et al. Vitamin D and diabetic nephropathy: A systematic review and meta-analysis. Nutrition. 2015;31(10):1189-1194. doi: https://doi.org/10.1016/j.nut.2015.04.009

53. de Boer IH, Sachs MC, Cleary PA, et al. Circulating vitamin D metabolites and kidney disease in type 1 diabetes. J Clin Endocrinol Metab. 2012;97(12):4780-4788. doi: https://doi.org/10.1210/jc.2012-2852

54. Metzger M, Houillier P, Gauci C, et al. Relation between circulating levels of 25(OH) vitamin D and parathyroid hormone in chronic kidney disease: quest for a threshold. J Clin Endocrinol Metab. 2013;98(7):2922-2928. doi: https://doi.org/10.1210/jc.2013-1294

55. González EA, Sachdeva A, Oliver DA, Martin KJ. Vitamin D insufficiency and deficiency in chronic kidney disease. A single center observational study. Am J Nephrol. 2004;24(5):503-510. doi: https://doi.org/10.1159/000081023

56. Taal MW, Thurston V, McIntyre NJ, et al. The impact of vitamin D status on the relative increase in fibroblast growth factor 23 and parathyroid hormone in chronic kidney disease. Kidney Int. 2014;86(2):407-413. doi: https://doi.org/10.1038/ki.2013.537

57. Shardlow A, McIntyre NJ, Fluck RJ, et al. Associations of fibroblast growth factor 23, vitamin D and parathyroid hormone with 5-year outcomes in a prospective primary care cohort of people with chronic kidney disease stage 3. BMJ Open. 2017;7(8):e016528. doi: https://doi.org/10.1136/bmjopen-2017-016528

58. Bai X, Luo Q, Tan K, Guo L. Diagnostic value of VDBP and miR-155-5p in diabetic nephropathy and the correlation with urinary microalbumin. Exp Ther Med. 2020;20(5):86. doi: https://doi.org/10.3892/etm.2020.9214

59. Fawzy MS, Abu AlSel BT. Assessment of vitamin D-binding protein and early prediction of nephropathy in type 2 Saudi diabetic patients. J Diabetes Res. 2018;2018:1-13. doi: https://doi.org/10.1155/2018/8517929

60. Shoukry A, Bdeer Sel-A, El-Sokkary RH. Urinary monocyte chemoattractant protein-1 and vitamin D-binding protein as biomarkers for early detection of diabetic nephropathy in type 2 diabetes mellitus. Mol Cell Biochem. 2015;408(1-2):25-35. doi: https://doi.org/10.1007/s11010-015-2479-y

61. Tian XQ, Zhao LM, Ge JP, et al. Elevated urinary level of vitamin D-binding protein as a novel biomarker for diabetic nephropathy. Exp Ther Med. 2014;7(2):411-416. doi: https://doi.org/10.3892/etm.2013.1426

62. Hamzawy M, Gouda SAA, Rashid L, et al. The cellular selection between apoptosis and autophagy: roles of vitamin D, glucose and immune response in diabetic nephropathy. Endocrine. 2017;58(1):66-80. doi: https://doi.org/10.1007/s12020-017-1402-6

63. Yang M, Yang B, Gan H, et al. Anti-inflammatory effect of 1,25-dihydroxyvitamin D3 is associated with crosstalk between signal transducer and activator of transcription 5 and the vitamin D receptor in human monocytes. Exp Ther Med. 2015;9(5):1739-1744. doi: https://doi.org/10.3892/etm.2015.2321

64. Wang Y, Deb DK, Zhang Z, et al. Vitamin D receptor signaling in podocytes protects against diabetic nephropathy. J Am Soc Nephrol. 2012;23(12):1977-1986. doi: https://doi.org/10.1681/ASN.2012040383

65. Kim MJ, Frankel AH, Donaldson M, et al. Oral cholecalciferol decreases albuminuria and urinary TGF-β1 in patients with type 2 diabetic nephropathy on established renin–angiotensin– aldosterone system inhibition. Kidney Int. 2011;80(8):851-860. doi: https://doi.org/10.1038/ki.2011.224

66. Zhang X, Zhou M, Guo Y, et al. 1,25-dihydroxyvitamin D 3 promotes high glucose-induced M1 macrophage switching to M2 via the VDR-PPAR γ signaling pathway. Biomed Res Int. 2015;2015:1-14. doi: https://doi.org/10.1155/2015/157834

67. Nakhoul N, Thawko T, Farber E, et al. The therapeutic effect of active vitamin D supplementation in preventing the progression of diabetic nephropathy in a diabetic mouse model. J Diabetes Res. 2020;2020:1-10. doi: https://doi.org/10.1155/2020/7907605

68. He W, Kang YS, Dai C, Liu Y. Blockade of Wnt/β-catenin signaling by paricalcitol ameliorates proteinuria and kidney injury. J Am Soc Nephrol. 2011;22(1):90-103. doi: https://doi.org/10.1681/ASN.2009121236

69. Zhang W, Yi B, Zhang K, et al. 1,25-(OH)2D3 and its analogue BXL-628 inhibit high glucose-induced activation of RhoA/ ROCK pathway in HK-2 cells. Exp Ther Med. 2017;13(5):1969-1976. doi: https://doi.org/10.3892/etm.2017.4211

70. Zhang W, Yi B, Zhang K, et al. KDIGO 2017 Clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD) [published correction appears in Kidney Int Suppl. 2017;7(3):e1]. Kidney Int Suppl. 2017;7(1):1-59. doi: https://doi.org/10.1016/j.kisu.2017.04.001

71. Levey AS, Coresh J, Bolton K, et al. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2S1):S1-S266.

72. Pigarova EA, Rozhinskaya LY, Belaya JE, et al. Russian Association of Endocrinologists recommendations for diagnosis, treatment and prevention of vitamin D deficiency in adults. Problems of Endocrinology. 2016;62(4):60-84. doi: https://doi.org/10.14341/probl201662460-84

73. Ennis JL, Worcester EM, Coe FL, Sprague SM. Current recommended 25-hydroxyvitamin D targets for chronic kidney disease management may be too low. J Nephrol. 2016;29(1):63-70. doi: https://doi.org/10.1007/s40620-015-0186-0

74. Ahmadi N, Mortazavi M, Iraj B, Askari G. Whether vitamin D3 is effective in reducing proteinuria in type 2 diabetic patients? J Res Med Sci. 2013;18(5):374-377.

75. Bonakdaran S., Hami M., Hatefi A. The effects of calcitriol on albuminuria in patients with type-2 diabetes mellitus. Saudi J Kidney Dis.Transpl. 2012;23(6):1215-1220. doi: https://doi.org/10.4103/1319-2442.103562

76. Liyanage P, Lekamwasam S, Weerarathna T, Liyanage C. Effect of Vitamin D therapy on urinary albumin excretion, renal functions, and plasma renin among patients with diabetic nephropathy: A randomized, double-blind clinical trial. J Postgrad Med. 2018;64(1):10. doi: https://doi.org/10.4103/jpgm.JPGM_598_16

77. Liyanage G, Lekamwasam S, Weerarathna T, Liyanage C. Effect of vitamin D therapy on bone mineral density in patients with diabetic nephropathy; a randomized, double-blind placebo controlled clinical trial. J Diabetes Metab Disord. 2021;20(1):229-235. doi: https://doi.org/10.1007/s40200-021-00737-y

78. Joergensen C, Tarnow L, Goetze JP, Rossing P. Vitamin D analogue therapy, cardiovascular risk and kidney function in people with Type 1 diabetes mellitus and diabetic nephropathy: a randomized trial. Diabet Med. 2015;32(3):374-381. doi: https://doi.org/10.1111/dme.12606


Supplementary files

1. Figure 1. The major steps in normal vitamin D metabolism. UVB — ultraviolet B; FGF23 — fibroblast growth factor 23; ПТГ — parathyroid hormone.
Subject
Type Исследовательские инструменты
View (198KB)    
Indexing metadata ▾
2. Figure 2. Pathogenesis of chronic kidney disease–mineral and bone disorder. Ca — calcium; P — phosphorus; FGF-23 — fibroblast growth factor 23; PTH — parathyroid hormone. Adapted from: Wetmore JB, Quarles LD. Nat Clin Pract Nephrol. 2009 Jan;5(1):24-33.
Subject
Type Исследовательские инструменты
View (199KB)    
Indexing metadata ▾

Review

For citations:


Abilov Z.V., Salimkhanov R.Kh., Povaliaeva A.A., Zhukov A.Yu., Pigarova E.A., Dzeranova L.K., Rozhinskaya L.Ya. Vitamin D metabolism in diabetic nephropathy. Obesity and metabolism. 2023;20(4):283-290. (In Russ.) https://doi.org/10.14341/omet12943

Views: 3603


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)