The role of IGF-1/GH in the aging process and the development of age-related diseases
https://doi.org/10.14341/omet12934
Abstract
One of the most important trends in geroscience is the search for the biomechanisms of aging and geroprotective methods. In recent years, more and more attention has been paid to the role of age-related decline in IGF-1 levels; processes that start with a decrease in the activity of the GH/IGF-1 axis. IGF-1 levels correlate differently with many age-associated diseases: diabetes mellitus, cancer, cardiovascular disease. A decrease in the level of IGF-1 and growth hormone in the elderly can contribute to the deterioration of the course of some pathologies, and also have a protective effect in the occurrence of different nosologies. The possibility of slowing down aging with the help of IGF-1 in basic research led to research aimed at studying the possibility of using IGF-1 preparations and growth hormone in clinical practice to slow down aging. We have studied the literature on the Pubmed platform, Scopus for the past 10 years in order to find some new information regarding influence of IGF-1 on aging, about the association between IGF-1 levels and major age-related diseases. We analyzed data of publications on the role of IGF-1 in aging and the development of age-related diseases. The search was carried out using key words: IGF-1, growth hormone, aging, the review included data from more than 60 publications.
About the Authors
A. K. IlyushchenkoRussian Federation
Anna K. Ilyushchenko
129226, 16 Leonova 1st street, Moscow
Competing Interests:
Явный или скрытый конфликт интересов отсутствует
L. V. Machekhina
Russian Federation
Liubov V. Machekhina, MD, PhD
Moscow
Competing Interests:
Явный или скрытый конфликт интересов отсутствует
I. D. Strazhesko
Irina D. Strazhesko, MD, PhD, professor
Moscow
Competing Interests:
Явный или скрытый конфликт интересов отсутствует
O. N. Tkacheva
Olga N. Tkacheva, MD, PhD, professor
Moscow
Competing Interests:
Явный или скрытый конфликт интересов отсутствует
References
1. Bartke A. Growth hormone and aging: Updated review. World J Mens Health. 2019;37(1):19-30. doi: https://doi.org/10.5534/wjmh.180018
2. Bidlingmaier M, Friedrich N, Emeny RT, et al. Reference intervals for insulin-like growth factor-1 (igf-i) from birth to senescence: results from a multicenter study using a new automated chemiluminescence IGF-I immunoassay conforming to recent international recommendations [published correction appears in J Clin Endocrinol Metab. 2020;105(12)]. J Clin Endocrinol Metab. 2014;99(5):1712-1721. doi: https://doi.org/10.1210/jc.2013-3059
3. Stojanovic M, Popevic M, Pekic S, et al. Serum Insulin-Like Growth Factor-1 (IGF-1) age-specific reference values for healthy adult population of Serbia. Acta Endocrinol (Buchar). 2021;17(4):462-471. doi: https://doi.org/10.4183/aeb.2021.462
4. Zhang WB, Ye K, Barzilai N, Milman S. The antagonistic pleiotropy of insulin-like growth factor 1. Aging Cell. 2021;20(9):e13443. doi: https://doi.org/10.1111/acel.13443
5. Rahmani J, Montesanto A, Giovannucci E, et al. Association between IGF-1 levels ranges and all-cause mortality: A meta-analysis. Aging Cell. 2022;21(2):e13540. doi: https://doi.org/10.1111/acel.13540
6. Laughlin GA, Barrett-Connor E, Criqui MH, Kritz-Silverstein D. The prospective association of serum insulin-like growth factor I (IGF-I) and IGF-binding protein-1 levels with all cause and cardiovascular disease mortality in older adults: the Rancho Bernardo Study. J Clin Endocrinol Metab. 2004;89(1):114-120. doi: https://doi.org/10.1210/jc.2003-030967
7. Kenyon C, Chang J, Gensch E, et al. A C. elegans mutant that lives twice as long as wild type. Nature. 1993;366(6454):461-464. doi: https://doi.org/10.1038/366461a0
8. Broughton SJ, Piper MD, Ikeya T, et al. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci U S A. 2005;102(8):3105-3110. doi: https://doi.org/10.1073/pnas.0405775102
9. Brown-Borg HM, Borg KE, Meliska CJ, Bartke A. Dwarf mice and the ageing process. Nature. 1996;384(6604):33. doi: https://doi.org/10.1038/384033a0
10. Tatar M, Kopelman A, Epstein D, et al. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science. 2001;292(5514):107-110. doi: https://doi.org/10.1126/science.1057987
11. Bonkowski MS, Rocha JS, Masternak MM, et al. Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proc Natl Acad Sci. 2006;103(20):7901-7905. doi: https://doi.org/10.1073/pnas.0600161103
12. Liu J-P, Baker J, Perkins AS, et al. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell. 1993;75(1):59-72. doi: https://doi.org/10.1016/S0092-8674(05)80084-4
13. Holzenberger M. The GH/IGF-I axis and longevity. Eur J Endocrinol. 2004;151(S1):S23-27 doi: https://doi.org/10.1530/eje.0.151s023
14. Thomas M, Berni E, Jenkins-Jones S, et al. Insulin-like growth factor-1, growth hormone and disease outcomes in acromegaly: A population study. Clin Endocrinol (Oxf ). 2021;95(1):143-152. doi: https://doi.org/10.1111/cen.14468
15. Laron Z. Lessons from 50 years of study of laron syndrome. Endocr Pract. 2015;21(12):1395-1402. doi: https://doi.org/10.4158/EP15939.RA
16. Olleros Santos-Ruiz M, Sádaba MC, Martín-Estal I, et al. The single IGF-1 partial deficiency is responsible for mitochondrial dysfunction and is restored by IGF-1 replacement therapy. Growth Horm IGF Res. 2017;35(1):21-32. doi: https://doi.org/10.1016/j.ghir.2017.05.007
17. Sádaba MC, Martín-Estal I, Puche JE, Castilla-Cortázar I. Insulinlike growth factor 1 (IGF-1) therapy: Mitochondrial dysfunction and diseases. Biochim Biophys Acta. 2016;1862(7):1267-1278. doi: https://doi.org/10.1016/j.bbadis.2016.03.010
18. Morales-Garza LA, Puche JE, Aguirre GA, et al. Experimental approach to IGF-1 therapy in CCl4 -induced acute liver damage in healthy controls and mice with partial IGF-1 deficiency. J Transl Med. 2017;15(1):96. doi: https://doi.org/10.1186/s12967-017-1198-4
19. Martín AI, Priego T, Moreno-Ruperez Á, et al. IGF-1 and IGFBP-3 in Inflammatory Cachexia. Int J Mol Sci. 2021;22(17):9469. doi: https://doi.org/10.3390/ijms22179469
20. Gennadinik AG, Nelaeva AA. Rol` insulinopodobnogo faktora rosta-I v metabolizme, regulyacii kletochnogo obnovleniya i processax stareniya. Obesity and metabolism. 2010;7(2);10-15. (In Russ.)].
21. Ameline B, Kovac M, Nathrath M, et al. Overactivation of the IGF signalling pathway in osteosarcoma: a potential therapeutic target? J Pathol Clin Res. 2021;7(2):165-172. doi: https://doi.org/10.1002/cjp2.191
22. Alsina-Sanchis E, Figueras A, Lahiguera Á, et al. The TGFβ pathway stimulates ovarian cancer cell proliferation by increasing IGF1R levels. Int J Cancer. 2016;139(8):1894-1903. doi: https://doi.org/10.1002/ijc.30233
23. Lovly CM, McDonald NT, Chen H, et al. Rationale for co-targeting IGF-1R and ALK in ALK fusion-positive lung cancer. Nat Med. 2014;20(9):1027-1034. doi: https://doi.org/10.1038/nm.3667
24. King H, Aleksic T, Haluska P, Macaulay VM. Can we unlock the potential of IGF-1R inhibition in cancer therapy? Cancer Treat Rev. 2014;40(9):1096-1105. doi: https://doi.org/10.1016/j.ctrv.2014.07.004
25. Janssen JA, Varewijck AJ. IGF-IR targeted therapy: past, present and future. Front Endocrinol (Lausanne). 2014;(5):224. doi: https://doi.org/10.3389/fendo.2014.00224
26. Vlahovic G, Meadows KL, Hatch AJ, et al. A Phase I Trial of the IGF-1R Antibody Ganitumab (AMG 479) in Combination with Everolimus (RAD001) and Panitumumab in Patients with Advanced Cancer. Oncologist. 2018;23(7):782-790. doi: https://doi.org/10.1634/theoncologist.2016-0377
27. Ameline B, Kovac M, Nathrath M, et al. Overactivation of the IGF signalling pathway in osteosarcoma: a potential therapeutic target? J Pathol Clin Res. 2021;7(2):165-172. doi: https://doi.org/10.1002/cjp2.191
28. van Bunderen CC, Deijen JB, Drent ML. Effect of low-normal and high-normal IGF-1 levels on memory and wellbeing during growth hormone replacement therapy: a randomized clinical trial in adult growth hormone deficiency. Health Qual Life Outcomes. 2018;16(1):135. doi: https://doi.org/10.1186/s12955-018-0963-2
29. Olivares-Hernández JD, Balderas-Márquez JE, Carranza M, et al. Growth Hormone (GH) Enhances Endogenous Mechanisms of Neuroprotection and Neuroplasticity after Oxygen and Glucose Deprivation Injury (OGD) and Reoxygenation (OGD/R) in Chicken Hippocampal Cell Cultures. Neural Plast. 2021;2021:1-24. doi: https://doi.org/10.1155/2021/9990166
30. Sanchez-Bezanilla S, Åberg ND, Crock P, et al. Growth hormone treatment promotes remote hippocampal plasticity after experimental cortical stroke. Int J Mol Sci. 2020;21(12):4563. doi: https://doi.org/10.3390/ijms21124563
31. Angelini A, Bendini C, Neviani F, et al. Insulin-like growth factor-1 (IGF-1): relation with cognitive functioning and neuroimaging marker of brain damage in a sample of hypertensive elderly subjects. Arch Gerontol Geriatr. 2009;49(S1):5-12. doi: https://doi.org/10.1016/j.archger.2009.09.006
32. Wennberg AMV, Hagen CE, Machulda MM, et al. The association between peripheral total IGF-1, IGFBP-3, and IGF-1/IGFBP-3 and functional and cognitive outcomes in the Mayo Clinic Study of Aging. Neurobiol Aging. 2018;(66):68-74. doi: https://doi.org/10.1016/j.neurobiolaging.2017.11.017
33. Federici M, Porzio O, Lauro D, et al. Increased abundance of insulin/insulin-like growth factor-i hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity1. J Clin Endocrinol Metab. 1998;83(8):2911-2915. doi: https://doi.org/10.1210/jcem.83.8.4935
34. Paolisso G, Ammendola S, Del Buono A, et al. Serum levels of insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 in healthy centenarians: relationship with plasma leptin and lipid concentrations, insulin action, and cognitive function. J Clin Endocrinol Metab. 1997;82(7):2204-2209. doi: https://doi.org/10.1210/jcem.82.7.4087
35. Belfiore A, Frasca F, Pandini G, et al. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev. 2009;30(6):586-623. doi: https://doi.org/10.1210/er.2008-0047
36. Giannoukakis N, Mi Z, Rudert WA, et al. Prevention of beta cell dysfunction and apoptosis activation in human islets by adenoviral gene transfer of the insulin-like growth factor I. Gene Ther. 2000;7(23):2015-2022. doi: https://doi.org/10.1038/sj.gt.3301333
37. Pronin VS, Koloda DE, Chapligina EV. Clinical use of insulin-like growth factors: their biological action and perspectives of application. Klinicist. 2008;3(1);18-27. (In Russ.)].
38. Burgos JI, Yeves AM, Barrena JP, et al. Nitric oxide and CaMKII: Critical steps in the cardiac contractile response To IGF-1 and swim training. J Mol Cell Cardiol. 2017;112(8):16-26. doi: https://doi.org/10.1016/j.yjmcc.2017.08.014
39. Neri Serneri GG, Boddi M, Modesti PA, et al. Increased cardiac sympathetic activity and insulin-like growth factor-I formation are associated with physiological hypertrophy in athletes. Circ Res. 2001;89(11):977-982. doi: https://doi.org/10.1161/hh2301.100982
40. Juul A, Scheike T, Davidsen M, et al. Low serum insulinlike growth factor I is associated with increased risk of ischemic heart disease: a population-based case-control study. Circulation. 2002;106(8):939-944. doi: https://doi.org/10.1161/01.cir.0000027563.44593.cc
41. Ruidavets JB, Luc G, Machez E, et al. Effects of insulin-like growth factor 1 in preventing acute coronary syndromes: The PRIME study. Atherosclerosis. 2011;218(2):464-469. doi: https://doi.org/10.1016/j.atherosclerosis.2011.05.034
42. Saber H, Himali JJ, Beiser AS, et al. Serum insulinlike growth factor 1 and the risk of ischemic stroke: The framingham study. stroke. 2017;48(7):1760-1765. doi: https://doi.org/10.1161/STROKEAHA.116.016563
43. Loeser RF. Growth factor regulation of chondrocyte integrins. Differential effects of insulin-like growth factor 1 and transforming growth factor beta on alpha 1 beta 1 integrin expression and chondrocyte adhesion to type VI collagen. Arthritis Rheum. 1997;40(2):270-276. doi: https://doi.org/10.1002/art.1780400211
44. Loeser RF, Shanker G, Carlson CS, et al. Reduction in the chondrocyte response to insulin-like growth factor 1 in aging and osteoarthritis: studies in a non-human primate model of naturally occurring disease. Arthritis Rheum. 2000;43(9):2110-2120. doi: https://doi.org/10.1002/1529-0131(200009)43:9<2110::AID-ANR23>3.0.CO;2-U
45. Nazli SA, Loeser RF, Chubinskaya S, et al. High fat-diet and saturated fatty acid palmitate inhibits IGF-1 function in chondrocytes. Osteoarthritis Cartilage. 2017;25(9):1516-1521. doi: https://doi.org/10.1016/j.joca.2017.05.011
46. Rico-Llanos GA, Becerra J, Visser R. Insulin-like growth factor-1 (IGF-1) enhances the osteogenic activity of bone morphogenetic protein-6 (BMP-6) in vitro and in vivo, and together have a stronger osteogenic effect than when IGF-1 is combined with BMP-2. J Biomed Mater Res A. 2017;105(7):1867-1875. doi: https://doi.org/10.1002/jbm.a.36051
47. Harvey S, Martinez-Moreno CG. Growth hormone: therapeutic possibilities-an overview. Int J Mol Sci. 2018;19(7):2015. doi: https://doi.org/10.3390/ijms19072015
48. Lutsenko AS, Nagaeva EV, Belaya ZhE, et al. Current aspects of diagnosis and treatment of adult GH-deficiency. Problems of Endocrinology. 2019;65(5):373-388. (In Russ.)]. doi: https://doi.org/10.14341/probl10322
49. Kamil G, Karolina S, Aleksandra S, et al. Alterations in stem cell populations in igf-1 deficient pediatric patients subjected to mecasermin (Increlex) treatment. Stem Cell Rev Rep. 2023;19(2):392-405. doi: https://doi.org/10.1007/s12015-022-10457-2
50. Xing T, Xu Y, Li J, et al. Associations between insulin-like growth factor-1 standard deviation score and overall nutritional parameters in patients with maintenance hemodialysis: a cross-sectional study. Int Urol Nephrol. 2023;43(9):2110-2120. doi: https://doi.org/10.1007/s11255-023-03526-z
51. Alizadeh Pahlavani H. Exercise therapy for people with sarcopenic obesity: myokines and adipokines as effective actors. Front Endocrinol (Lausanne). 2022;13(9):2110-2120. doi: https://doi.org/10.3389/fendo.2022.811751
52. Hadem IKH, Sharma R. Differential regulation of hippocampal IGF-1-associated signaling proteins by dietary restriction in aging mouse. Cell Mol Neurobiol. 2017;37(6):985-993. doi: https://doi.org/10.1007/s10571-016-0431-7
53. Gram IT, Norat T, Rinaldi S, et al. Body mass index, waist circumference and waist-hip ratio and serum levels of IGF-I and IGFBP-3 in European women. Int J Obes (Lond). 2006;30(11):1623-1631. doi: https://doi.org/10.1038/sj.ijo.0803324
54. Lifshitz F. Nutrition and growth. J Clin Res Pediatr Endocrinol. 2009;1(4):157-163. doi: https://doi.org/10.4274/jcrpe.v1i4.39
55. Chromiak JA, Antonio J. Use of amino acids as growth hormonereleasing agents by athletes. Nutrition. 2002;18(7-8):657-661. doi: https://doi.org/10.1016/s0899-9007(02)00807-9
56. Alba-Roth J, Müller OA, Schopohl J, von Werder K. Arginine stimulates growth hormone secretion by suppressing endogenous somatostatin secretion. J Clin Endocrinol Metab. 1988;67(6):1186-1189. doi: https://doi.org/10.1210/jcem-67-6-1186
57. Livesey G, Taylor R, Hulshof T, Howlett J. Glycemic response and health--a systematic review and meta-analysis: relations between dietary glycemic properties and health outcomes. Am J Clin Nutr. 2008;87(1):258S-268S. doi: https://doi.org/10.1093/ajcn/87.1.258S
58. Suminski RR, Robertson RJ, Goss FL, et al. Acute effect of amino acid ingestion and resistance exercise on plasma growth hormone concentration in young men. Int J Sport Nutr. 1997;7(1):48-60. doi: https://doi.org/10.1123/ijsn.7.1.48
Supplementary files
|
1. Figure 1. The relationship between IGF-1 levels and the risk of mortality, dementia, diabetes mellitus, cardiovascular disease, osteoporosis, cancer | |
Subject | ||
Type | Other | |
View
(532KB)
|
Indexing metadata ▾ |
Review
For citations:
Ilyushchenko A.K., Machekhina L.V., Strazhesko I.D., Tkacheva O.N. The role of IGF-1/GH in the aging process and the development of age-related diseases. Obesity and metabolism. 2023;20(2):149-157. (In Russ.) https://doi.org/10.14341/omet12934

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).