Preview

Obesity and metabolism

Advanced search

Cytokines and regulation of glucose and lipid metabolism in the obesity

https://doi.org/10.14341/omet12863

Abstract

The article presents data of the influence of cytokines of different directions of glucose and lipid metabolism in obesity. A change of the basic paradigm regarding adipose tissue has contributed to a number of recent discoveries. This concerns such basic concepts as healthy and diseased adipocytes, and, as a consequence, changes of their metabolism under the influence of cytokins. Distinguishing the concept of organokines demonstrates that despite the common features of cytokine regulation, each organ has its own specifics features of cytokine regulation, each organ has its own specific an important section of this concept is the idea of the heterogeneity of adipose tissue. Knowledge of the function of adipose tissue localized in different compartments of the body is expanding. There are date about the possibility of transition of one type of adipose tissue to another. A possible mechanism linking adipose tissue inflammation and the formation of insulin resistance (IR) is presented in this paper. The mechanism of IR development is closely connected with to proinflammatory cytokins disordering the insulin signal, accompanied by a decrease of the work of glucose transporters. A decrease of the income of glucose into cells leads to a change of glycolysis level to an increase of the fatty acids oxidation. Cytokins are able to participate in the process of the collaboration of some cells with others, that occurs both during physiological and pathological process.

About the Authors

V. I. Scherbakov
Federal Research Center of Fundamental and Translational Medicine

Vladimir I. Scherbakov, MD, PhD

Novosibirsk



G. A. Skosyreva
Federal Research Center of Fundamental and Translational Medicine

Galina А. Skosyreva, MD, PhD

Novosibirsk



T. I. Ryabichenko
Federal Research Center of Fundamental and Translational Medicine
Russian Federation

Tatyana I. Ryabichenko, MD, PhD

6, 1 Per. Parchomenko, 630108 Novosibirsk

 



O. O. Obukhova
Federal Research Center of Fundamental and Translational Medicine

Olga O. Obukhova, MD, PhD

Novosibirsk



References

1. Cheng L, Wang J, Dai H, et al. Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte. 2021;10(1):48-65. doi: https://doi.org/10.1080/21623945.2020.1870060

2. Connon SRD, Soyunov MA. Infertility in the era of obesity: epidemiology and methods of its determination. Obstetrics and Gynecology: News, Opinions, Training. 2018:6(3):105-112. (In Russ.). doi: https://doi.org/10.24411/2303-9698-2018-13012

3. Bokova TA. Risk factors for the formationo of metabolic syndromein children with obesity. Russian Bulletin of Perinatology and Pediatrics. 2018:63(3):64-69 (in Russ.). doi: https://doi.org/10.21508/1027-4065-2018-63-3-64-69

4. Cheong LY, XuA. Intercellular and inter-organ crosstalk in browning of white adipose tissue : molecular mechanism and therapeutic complications. J Mol Cell Biol. 2021;13(7):466-479. doi: https://doi.org/10.1093/jmcb/mjab038

5. Somm E, Henrichot E, Pernin A, et al. Decreased fat mass in interleukin-1 receptor antagonist–deficient mice. Diabetes. 2005;54(12):3503-3509. doi: https://doi.org/10.2337/diabetes.54.12.3503

6. Takaya K, Matsuda N, Asou T, Kishi K. Brown preadipocyte transplantation locally ameliorates obesity. Arch Plast Surg. 2021;48(4):440-447. doi: https://doi.org/10.5999/aps.2020.02257

7. Shcherbakov VI, Ryabichenko TI, Skosyreva GA, Trunov AN. Mechanisms of prenatal programming of obesity in children. Russian Bulletin of Perinatology and Pediatrics. 2013;19(5):8-14. (In Russ.)

8. Povarova OA, Gorodetskaya EA, Kalenikova EI, Medvedev OS. Metabolic markers and oxidative stress in the pathogenesis ofobesity in children. Russian Bulletin of Perinatology and Pediatrics. 2020;65(1):22-29. (In Russ.). doi: https://doi.org/10:21508/1027-4065-2020-65-1-22-29

9. Vadde R, Gupta MK, Nagaraju GP. Is Adipose Tissue an Immunological Organ? Crit Rev Immunol. 2019;39(6):481-490. doi: https://doi.org/10.1615/CritRevImmunol.2020033457

10. Yang FT, Stanford KI. Batokines: Mediators of Inter-Tissue Communication (a Mini-Review). Curr Obes Rep. 2022;11(1):1-9. doi: https://doi.org/10.1007/s13679-021-00465-7

11. Qing H, Desrouleaux R, Israni-Winger K, et al. Origin and function of stress-induced IL-6 in murine models. Cell. 2020;182(2):372-387. e14. doi: https://doi.org/10.1016/j.cell.2020.05.054

12. Shi J, Fan J, Su Q, Yang Z. Cytokines and Abnormal Glucose and Lipid Metabolism. Front Endocrinol (Lausanne). 2019;10:703. doi: https://doi.org/10.3389/fendo.2019.00703

13. Li L, Yang G, Shi S, et al. The adipose triglyceride lipase, adiponectin and visfatin are downregulated by tumor necrosis factor-alpha (TNF-alpha) in vivo. Cytokine. 2009;45(1):12-19. doi: https://doi.org/10/1016/j.cyto.2008.10.006

14. Romantsova TI, Sych YuP. Immunometabolism and meta-inflammation in obesity. Obesity and metabolism. 2019;16(4):3-17. (In Russ.) doi: https://doi.org/10.24411/2303-9698-2018-13012

15. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrionol Metab. 2004;89(6):2548-2556. doi: https://doi.org/10.1210/jc.2004-0395

16. Trayhum P. Adipokines: inflammation and pleiotrop. doic role of white adipose tissue. Br J Nutr. 2022:127(2):161-164. doi: https://doi.org/10.1017/S0007114521003962

17. Kwon H, Pessin JE. Adipokines mediate inflammaton and insulin resistance. Front Endcrinol. 2013;(4):71. doi: https://doi.org/10.3389/fendo2013.00071

18. Ravussin E, Galgani JE. The implication of brown adipose tissue for humans. Annu Rev Nutr. 2011;31(1):33-47. doi: https://doi.org/10.1146/annurev-nutr-072610-145209

19. Hardy OT, Czech MP, Corvera S. What causes the insulin resistance underlying obesity? Curr Opin Endocrinol Diabetes Obes. 2012;19(2):81-87. doi: https://doi.org/10.1097/MED.0b013e3283514e13

20. Michailidou Z, Gomez-Salazar M, Alexaki VI. Innate Immune Cells in the Adipose Tissue in Health and Metabolic Disease. J Innate Immun. 2022;14(1):4-30. doi: https://doi.org/10.1159/000515117

21. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Metab. 2007;293(2):E444-E452. doi: https://doi.org/10.1152/ajpendo.00691.2006

22. Lorenzo M, Fernander-VeledoS, Vila- Bedmar R, et al. Insulin resistance induced by tumor necrosis factor-alpha in myocytes and brown adipocytes. J Anim Sci. 2008;86(14):94-104. doi: https://doi.org/10.2527/jas.2007-0462

23. Rodríguez A, Ezquerro S, Méndez-Giménez L, et al. Revisiting the adipocyte: a model for integration of cytokine signaling in the regulation of energy metabolism. Am J Physiol Metab. 2015;309(8):E691-E714. doi: https://doi.org/10.1152/ajpendo.00297.2015

24. Giordano A, Smorlesi A, Frontini A, Barbatelli G, Cinti S. Mechanisms in endocrinology: White, brown and pink adipocytes: the extraordinary plasticity of the adipose organ. Eur J Endocrinol. 2014;170(5):R159-R171. doi: https://doi.org/10.1530/EJE-13-0945

25. Kaisanlahti A, Glumoff T. Browning of white fat: agents and implications for beige adipose tissue to type 2 diabetes. J Physiol Biochem. 2019;75(1):1-10. doi: https://doi.org/10.1007/s13105-018-0658-5

26. Zhang Y, Li R, Meng Y, et al. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinage p 38 MAP kinase and ERK MAP kinase signaling. Diabetes. 2014;63(2):514-525. doi: https://doi.org/10.23371/db 13-1106 2

27. Abdullahi A, Chen P, Stanojcic M, et al. IL-6 signal from the bone marrow is required for the browning of white adipose tissue post burn injury. Shock. 2017;47(1):33-39. doi: https://doi.org/10.1097/SHK.0000000000000749

28. Annunziata C, Pirozzi C, Lama A, et al. Palmitoylethanolamide promotes white-to-beige conversion and metabolic reprogramming of adipocytes: contribution of PPAR-α. Pharmaceutics. 2022;14(2):338. doi: https://doi.org/10.3390/pharmaceutics14020338

29. Li J, Lu L, Liu Y, Yu X. Bone marrow adiposity during pathologic bone loss: molecular mechanisms underlying the cellular events. J Mol Med. 2022;100(2):167-183. doi: https://doi.org/10.1007/s00109-021-02164-1

30. Odegaard JI, Chawla A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science (80-). 2013;339(6116):172-177. doi: https://doi.org/10.1126/science.1230721

31. Choi S. Glycogen as regulator of white fat browning. A new stady on the relationship between glycogen metabolism and thermogenesis. Mol Cells. 2022;45(4):177-179. doi: https://doi.org/10.14348/molcells.2022.2050

32. Chitraju C, Fischer AW, Farese RV, Walther TC. Lipid droplets in brown adipose tissue are dispensable for coldinduced thermogenesis. Cell Rep. 2020;33(5):108348. doi: https://doi.org/10.1016/j.celrep.2020.108348

33. Cummings BP, Bettaieb A, Graham JL, et al. Subcutaneous administration of leptin normalizes fasting plasma glucose in obese type 2 diabetic UCD-T2DM rats. Proc Natl Acad Sci. 2011;108(35):14670-14675. doi: https://doi.org/10.1073/pnas.1107163108

34. Kadowaki T, Yamanuchi T, Kubota N, et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006;116(7):1784-1792. doi: https://doi.org/10.1172/JCI29126

35. Acquarone E, Monacelli F, Borghi R, et al. Resistin: A reappraisal. Mech Ageing Dev. 2019;178(7):46-63. doi: https://doi.org/10.1016/j.mad.2019.01.004

36. Zhang L, Chen C, Zhou N, et al. Circulating asprosin concentrations are increased in type 2 diabetes mellitus and independently associated with fasting glucose and triglyceride. Clin Chim Acta. 2019;489:183-188. doi: https://doi.org/10.1016/j.cca.2017.10.034

37. Jialal I, Devaraj S, Kaur H, et al. Increased chemerin and decreased omentin-1 in both adipose tissue and plasma in nascent metabolic syndrome. J Clin Endocrinol Metab. 2013;98(3):E514-E517. doi: https://doi.org/10.1210/jc.2012-3673

38. Arner P, Pettersson A, Mitchell PJ, et al. FGF21 attenuates lipolysis in human adipocytes - A possible link to improved insulin sensitivity. FEBS Lett. 2008;582(12):1725-1730. doi: https://doi.org/10.1016/j.febslet.2008.04.038

39. Wu H-T, Lu F-H, Ou H-Y, et al. The role of Hepassocin in the development of non-alcoholic fatty liver disease. J Hepatol. 2013;59(5):1065-1072. doi: https://doi.org/10.1016/j.jhep.2013.06.004

40. Pal D, Dasgupta S, Kundu R, et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med. 2012;18(8):1279-1285. doi: https://doi.org/10.1038/nm.2851

41. Choi HY, Hwang SY, Lee CH, et al. increased selenoprotein p levels in subjects with visceral obesity and nonalcoholic Fatty liver disease. Diabetes Metab J. 2013;37(1):63. doi: https://doi.org/10.4093/dmj.2013.37.1.63

42. Liu C, Feng X, Li Q, et al. Adiponectin, TNF-α and inflammatory cytokines and risk of type 2 diabetes: A systematic review and meta-analysis. Cytokine. 2016;86(1):100-109. doi: https://doi.org/10.1016/j.cyto.2016.06.028

43. Jager J, Grémeaux T, Cormont M, et al. Interleukin-1β-Induced Insulin Resistance in Adipocytes through Down-Regulation of Insulin Receptor Substrate-1 Expression. Endocrinology. 2007;148(1):241-251. doi: https://doi.org/10.1210/en.2006-0692

44. Timper K, Denson JL, Steculorum SM, et al. IL-6 Improves Energy and Glucose Homeostasis in Obesity via Enhanced Central IL-6 trans-Signaling. Cell Rep. 2017;19(2):267-280. doi: https://doi.org/10.1016/j.celrep.2017.03.043

45. Kanda H, Tateya S, Tamori Y, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116(6):1494-1505. doi: https://doi.org/10.1172/JCI26498

46. Moreno-Navarrete JM, Ortega F, Serrano M, et al. Irisin Is Expressed and Produced by Human Muscle and Adipose Tissue in Association With Obesity and Insulin Resistance. J Clin Endocrinol Metab. 2013;98(4):E769-E778. doi: https://doi.org/10.1210/jc.2012-2749

47. Jiang LQ, Franck N, Egan B, et al. Autocrine role of interleukin-13 on skeletal muscle glucose metabolism in type 2 diabetic patients involves microRNA let-7. Am J Physiol Metab. 2013;305(11):E1359-E1366. doi: https://doi.org/10.1152/ajpendo.00236.2013

48. Nielsen AR, Hojman P, Erikstrup C, et al. Association between Interleukin-15 and obesity: Interleukin-15 as a potential regulator of fat mass. J Clin Endocrinol Metab. 2008;93(11):4486-4493. doi: https://doi.org/10.1210/jc.2007-2561

49. Liu D, Mosialou I, Liu J. Bone: Another potential target to treat, prevent and predict diabetes. Diabetes, Obes Metab. 2018;20(8):1817-1828. doi: https://doi.org/10.1111/dom.13330

50. Si J, Wang C, Zhang D, et al. Osteopontin in bone metabolism and bone diseases. Med Sci Monit. 2020;(26):e919159. doi: https://doi.org/10.12659/MSM.919159

51. Cipriani C, Colangelo L, Santori R, et al. The interplay between bone and glucose metabolism. Front Endocrinol (Lausanne). 2020;(11):122. doi: https://doi.org/10.3389/fendo.2020.00122

52. Ricart W, Fernández-Real JM. La resistencia a la insulina como mecanismo de adaptación durante la evolución humana. Endocrinol Nutr. 2010;57(8):381-390. doi: https://doi.org/10.1016/j.endonu.2010.05.003

53. Li C, Xu MM, Wang K, et al. Macrophage polarization and meta-inflammation. Transl Res. 2018;191(8):29-44. doi: https://doi.org/10.1016/j.trsl.2017.10.004

54. Nagao K, Inoue N, Suzuki K, et al. The cholesterol metabolite cholest-5-en-3-one alleviates hyperglycemia and hyperinsulinemia in obese (db/db) mice. Metabolites. 2021;12(1):26. doi: https://doi.org/10.3390/metabo12010026

55. Graf C, Ferrari N. Metabolic health — the role of adipo-myokines. Int J Mol Sci. 2019;20(24):6159. doi: https://doi.org/10.3390/ijms20246159

56. Klein D, Álvarez-Cubela S, Lanzoni G, et al. BMP-7 induces adult human pancreatic exocrine-to-endocrine conversion. Diabetes. 2015;64(12):4123-4134. doi: https://doi.org/10.2337/db15-0688

57. Zickler M, Stanelle-Bertram S, Ehret S, et al. Replication of SARS-CoV-2 in adipose tissue determines organ and systemic lipid metabolism in hamsters and humans. Cell Metab. 2022;34(1):1-2. doi: https://doi.org/10.1016/j.cmet.2021.12.002

58. Tsilingiris D, Dalamaga M, Liu J. SARS-CoV-2 adipose tissue infection and hyperglycemia: A further step towards the understanding of severe COVID-19. Metab Open. 2022;(13):100163. doi: https://doi.org/10.1016/j.metop.2022.100163

59. Cinti F, Cinti S. The Endocrine Adipose Organ: A System Playing a Central Role in COVID-19. Cells. 2022;11(13):2109. doi: https://doi.org/10.3390/cells11132109

60. Gunawardana SC, Piston DW. Insulin-independent reversal of type-1 diabetes following transplantation of adult brown adipose tissue supplemented with IGF-1. Transplant Direct. 2019;5(11):e500. doi: https://doi.org/10.1097/TXD.0000000000000945

61. Yao L, Wang Q, Zhang R, et al. Brown adipose transplantation improves polycystic ovary syndrome-involved metabolome remodeling. Front Endocrinol (Lausanne). 2021;29(12):747-944. doi: https://doi.org/10.3389/fendo.2021.747944

62. Tsagkaraki E, Nicoloro SM, DeSouza T, et al. CRISPRenhanced human adipocyte browning as cell therapy for metabolic disease. Nat Commun. 2021;12(1):6931. doi: https://doi.org/10.1038/s41467-021-27190-y


Review

For citations:


Scherbakov V.I., Skosyreva G.A., Ryabichenko T.I., Obukhova O.O. Cytokines and regulation of glucose and lipid metabolism in the obesity. Obesity and metabolism. 2022;19(3):317-323. (In Russ.) https://doi.org/10.14341/omet12863

Views: 2960


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)