Preview

Obesity and metabolism

Advanced search

Free-radical oxidation as a pathogenetic factor of metabolic syndrome

https://doi.org/10.14341/omet12804

Abstract

The medical and social significance of cardiovascular diseases remains high. One of the factors that determine cardiovascular risks is metabolic syndrome. As a result of excessive accumulation of lipid and carbohydrate metabolism products in metabolic syndrome, oxidative (oxidative) stress develops. The article considers both domestic and foreign scientific studies, which highlight various aspects of the influence of reactive oxygen and nitrogen species, as well as other free radicals on the formation of oxidative stress in pathological conditions that are part of the metabolic syndrome complex. This describes the mechanisms of the formation of chronic inflammation through excessive secretion of pro-inflammatory cytokines and adipokines, activation of the transcription factor NF-kB, as well as damage to the antioxidant system in obesity. Separately, a number of mechanisms of the stimulating effect of adipokines: leptin, adiponectin, chimerine, omentin 1, resistin, on the formation of oxidative stress have been noted. The ways of activating the polyol pathway, as well as diacyl-glycerol — protein kinase C — the signaling pathway of oxidative stress, the formation of mitochondrial dysfunction is described. As a result of which there is an excessive production of free radicals in insulin resistance, diabetes mellitus and macroand microvascular complications of diabetes. In addition, the influence of oxidative stress directly on the formation of cardiovascular diseases of atherosclerotic genesis, as well as arterial hypertension, has been shown.

About the Authors

D. A. Anikin
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Clinical Regional Hospital
Russian Federation

Dmitry A. Anikin, MD

st. Partizana Zheleznyaka 1, 660022, Krasnoyarsk

Researcher ID: AAH-8919-2021; eLibrary SPIN: 3045-8493



I. A. Solovyeva
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Clinical Regional Hospital
Russian Federation

Irina A. Solovyeva, MD, PhD

Krasnoyarsk

eLibrary SPIN: 8713-5470



I. V. Demko
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Clinical Regional Hospital
Russian Federation

Irina V. Demko, MD, PhD, Professor

Krasnoyarsk

eLibrary SPIN: 6520-3233



E. A. Sobko
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Clinical Regional Hospital
Russian Federation

Elena A. Sobko, MD, PhD, Professor

Krasnoyarsk

eLibrary SPIN: 9132-6756



A. Yu. Kraposhina
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Clinical Regional Hospital
Russian Federation

Angelina Yu. Kraposhina, MD, PhD

Krasnoyarsk

eLibrary SPIN: 8829-9240



N. V. Gordeeva
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Clinical Regional Hospital
Russian Federation

Natal’ya V. Gordeeva, MD, PhD

Krasnoyarsk

eLibrary SPIN: 7914-7630



References

1. Naghavi M, Wang H, Lozano R, et al. Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385(9963):117-171. doi: https://doi.org/10.1016/S0140-6736(14)61682-2

2. Mahbuba S, Mohsin F, Rahat F. Descriptive epidemiology of metabolic syndrome among obese adolescent population. Diabetes Metab Syndr. 2018;12(3):369-374. doi: https://doi.org/10.1016/j.dsx.2017.12.026

3. Ansarimoghaddam A, Adineh HA, Zareban I, et al. Prevalence of metabolic syndrome in Middle-East countries: Meta-analysis of cross-sectional studies. Diabetes Metab Syndr. 2018;12(2):195-201. doi: https://doi.org/10.1016/j.dsx.2017.11.004

4. Belenkov YN, Privalova EV, Kaplunova VY, et al. Metabolic Syndrome: Development of the Issue, Main Diagnostic Criteria. Ration Pharmacother Cardiol. 2018;14(5):757-764. (In Russ.). doi: https://doi.org/10.20996/1819-6446-2018-14-5-757-764

5. Malyavskaya SI, Lebedev AV, Kostrova GN. Oxidative stress level and blood antioxidant ability violation in children and adolescents with metabolic syndrome. Exp Clin Gastroenterol. 2019;161(1):81-87. (In Russ.). doi: https://doi.org/10.31146/1682-8658-ecg-161-1-81-87

6. Ilyina IIy, Dobrokhotova YuYe. Role of oxidative stress in the development of gynecological diseases. Obstetrics and gynecology. 2021;2:150-156. (In Russ.). doi: https://doi.org/10.18565/aig.2021.2.150-156

7. Vona R, Gambardella L, Cittadini C, et al. Biomarkers of Oxidative Stress in Metabolic Syndrome and Associated Diseases. Oxid Med Cell Longev. 2019;2019:1-19. doi: https://doi.org/10.1155/2019/8267234

8. Xu H, Li X, Adams H, et al. Etiology of Metabolic Syndrome and Dietary Intervention. Int J MolSci. 2018;20(1):128. doi: https://doi.org/10.3390/ijms20010128

9. Miftakhova AM, Pestrenin LD, Gulyaeva IL. Role of leptin in pathogenesis of hepatic steatosis, steatohepatitis and endothelial dysfunction in obesity: literature review. Perm Med J. 2020;37(3):58-65. (In Russ.). doi: https://doi.org/10.17816/pmj37358-65

10. Di Domenico M, Pinto F, Quagliuolo L, et al. The Role of Oxidative Stress and Hormones in Controlling Obesity. Front Endocrinol (Lausanne). 2019;10(3):58-65. doi: https://doi.org/10.3389/fendo.2019.00540

11. Akhter N, Madhoun A, Arefanian H, et al. Oxidative stress induces expression of the Toll-Like Receptors (TLRs) 2 and 4 in the human peripheral blood mononuclear cells: implications for metabolic inflammation. Cell. Physiol. Biochem. 2019;53(1):1-18. doi: https://doi.org/10.33594/000000117

12. Hauck AK, Huang Y, Hertzel AV, Bernlohr DA. Adipose oxidative stress and protein carbonylation. J. Biol. Chem. 2019;294(4):1083-1088. doi: https://doi.org/10.1074/jbc.R118.003214

13. McCracken E, Monaghan M, Sreenivasan S. Pathophysiology of the metabolic syndrome. Clin Dermatol. 2018;36(1):14-20. doi: https://doi.org/10.1016/j.clindermatol.2017.09.004

14. Conti FF, Brito JO, Bernardes N, et al. Positive effect of combined exercise training in a model of metabolic syndrome and menopause: autonomic, inflammatory, and oxidative stress evaluations. Am J Physiol Regul Integr Comp Physiol. 2015;309(12):R1532-1539. doi: https://doi.org/10.1152/ajpregu.00076.2015

15. Chen K, Chen X, Xue H, et al. Coenzyme Q10 attenuates highfat diet-induced non-alcoholic fatty liver disease through activation of the AMPK pathway. Food Funct. 2019;10(2):814-823. doi: https://doi.org/10.1039/c8fo01236a

16. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114(12):1752-1761. doi: https://doi.org/10.1172/JCI21625

17. Reina-Couto M, Afonso J, Carvalho J, et al. Interrelationship between renin-angiotensin-aldosterone system and oxidative stress in chronic heart failure patients with or without renal impairment. Biomed Pharmacother. 2021;133(12):110938. doi: https://doi.org/10.1016/j.biopha.2020.110938

18. Ghanemi A, Melouane A, Yoshioka M, St-Amand J. Secreted protein acidic and rich in cysteine and bioenergetics: Extracellular matrix, adipocytes remodeling and skeletal muscle metabolism. Int J Biochem Cell Biol. 2019;117(12):105627. doi: https://doi.org/10.1016/j.biocel.2019.105627

19. Casagrande D, Waib PH, Jordão Júnior AA. Mechanisms of action and effects of the administration of Coenzyme Q10 on metabolic syndrome. J Nutr Intermed Metab. 2018;13(12):26-32. doi: https://doi.org/10.1016/j.jnim.2018.08.002

20. Vona R, Gambardella L, Cittadini C, et al. Biomarkers of Oxidative Stress in Metabolic Syndrome and Associated Diseases. Oxid Med Cell Longev. 2019;2019(12):1-19. doi: https://doi.org/10.1155/2019/8267234

21. Gao M, Zhao Z, Lv P, et al. Quantitative combination of natural anti-oxidants prevents metabolic syndrome by reducing oxidative stress. Redox Biol. 2015;6(12):206-217. doi: https://doi.org/10.1016/j.redox.2015.06.013

22. Netto LE, Antunes F. The roles of peroxiredoxin and thioredoxin in hydrogen peroxide sensing and in signal transduction. Mol. Cells. 2006;39(1):65-71. doi: https://doi.org/10.14348/molcells.2016.2349

23. Shergalis AG, Hu S, Bankhead A, Neamati N. Role of the ERO1-PDI interaction in oxidative protein folding and disease. Pharmacol Ther. 2020;210(1):107525. doi: https://doi.org/10.1016/j.pharmthera.2020.107525

24. Abu Bakar H, Robert Dunn W, Daly C, Ralevic V. Sensory innervation of perivascular adipose tissue: a crucial role in artery vasodilatation and leptin release. Cardiovasc Res. 2017;113(8):962-972. doi: https://doi.org/10.1093/cvr/cvx062

25. Lau WB, Ohashi K, Wang Y, et al. Role of Adipokines in Cardiovascular Disease. Circ J. 2017;81(7):920-928. doi: https://doi.org/10.1253/circj.CJ-17-0458

26. Chumakova GA, Ott AV, Veselovskaya NG, et al. Pathogenetic mechanisms of leptin resistance. Rossiyskiy kardiologicheskiy zhurnal. 2015;4(120):107-110. (In Russ.). doi: https://doi.org/10.15829/1560-4071-2015-04-107-110

27. Ott AV, Chumakova GA, Veselovskaya NG. Leptin resistance as a significant predictor of the metabolically obese obesity phenotype. DOKTOR.RU. 2018;8(152):30-35. (In Russ.). doi: https://doi.org/10.31550/1727-2378-2018-152-8-30-35

28. Akoumianakis I, Antoniades C. The interplay between adipose tissue and the cardiovascular system: is fat always bad? Cardiovasc Res. 2017;113(9):999-1008. doi: https://doi.org/10.1093/cvr/cvx111

29. Hiramatsu-Ito M, Shibata R, Ohashi K, et al. Omentin attenuates atherosclerotic lesion formation in apolipoprotein E-deficient mice. Cardiovasc Res. 2016;110(1):107-117. doi: https://doi.org/10.1093/cvr/cvv282

30. Barazzoni R, Gortan Cappellari G, Ragni M, Nisoli E. Insulin resistance in obesity: an overview of fundamental alterations. Eat Weight Disord - Stud Anorexia, Bulim Obes. 2018;23(2):149-157. doi: https://doi.org/10.1007/s40519-018-0481-6

31. Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A. Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. Oxid Med Cell Longev. 2020;2020(2):1-13. doi: https://doi.org/10.1155/2020/8609213

32. Tkachenko EI, Grinevich VB. Metabolic aspects of therapeutic problems. Eksperimental’naya i klinicheskaya gastroenterologiya. 2020;179(7):52-61. (In Russ.). doi: https://doi.org/10.31146/1682-8658-ecg-179-7-52-61

33. Akash MS, Rehman K, Liaqat A. Tumor necrosis factor-alpha: role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2018;119(1):105-110. doi: https://doi.org/10.1002/jcb.26174

34. Hurrle S, Hsu WH. The etiology of oxidative stress in insulin resistance. Biomed J. 2017;40(5):257-262. doi: https://doi.org/10.1016/j.bj.2017.06.007

35. Poblete-Aro C, Russell-Guzmаn J, Parra P, et al. Exercise and oxidative stress in type 2 diabetes mellitus. Rev Med Chil. 2018;146(3):362-372. doi: https://doi.org/10.4067/s0034-98872018000300362

36. Tan BL, Norhaizan ME, Liew W-P-P. Nutrients and Oxidative Stress: Friend or Foe? Oxid Med Cell Longev. 2018;2018(2):1-24. doi: https://doi.org/10.1155/2018/9719584

37. Gerber PA, Rutter GA. The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus. Antioxid Redox Signal. 2017;26(10):501-518. doi: https://doi.org/10.1089/ars.2016.6755

38. Drews G, Krippeit-Drews P, Düfer M. Oxidative stress and β-cell dysfunction. Pflugers Arch. 2010;460(4):703-718. doi: https://doi.org/10.1007/s00424-010-0862-9

39. Isakov N. Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression. Semin Cancer Biol. 2018;48(2):36-52. doi: https://doi.org/10.1016/j.semcancer.2017.04.012

40. Shafique E, Torina A, Reichert K, et al. Mitochondrial redox plays a critical role in the paradoxical effects of NAPDH oxidase-derived ROS on coronary endothelium. Cardiovasc Res. 2017;113(2):234-246. doi: https://doi.org/10.1093/cvr/cvw249

41. Tsai S-H, Lu G, Xu X, Ren Y, Hein TW, Kuo L. Enhanced endothelin-1/ Rho-kinase signalling and coronary microvascular dysfunction in hypertensive myocardial hypertrophy. Cardiovasc Res. 2017;113(11):1329-1337. doi: https://doi.org/10.1093/cvr/cvx103

42. Migrino RQ, Davies HA, Truran S, et al. Amyloidogenic medin induces endothelial dysfunction and vascular inflammation through the receptor for advanced glycation endproducts. Cardiovasc Res. 2017;113(11):1389-1402. doi: https://doi.org/10.1093/cvr/cvx135

43. Aragno M, Mastrocola R. Dietary sugars and endogenous formation of advanced glycation endproducts. Emerging mechanisms of disease. Nutrients. 2017;9(4):1-16. doi: https://doi.org/10.3390/nu9040385

44. Luc K, Schramm-Luc A, Guzik TJ, Mikolajczyk TP. Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol. 2019;70(6):809-824. doi: https://doi.org/10.26402/jpp.2019.6.01

45. Sorop O, Heinonen I, van Kranenburg M, et al. Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening. Cardiovasc Res. 2018;114(7):954-964. doi: https://doi.org/10.1093/cvr/cvy038

46. Preiss D, Seshasai SR, Welsh P, et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA. 2011;305(24):2556-2564. doi: https://doi.org/10.1001/jama.2011.860

47. Lyudinina AYu, Potolitsyna NN, Eseva TV, et al. Influence of lifestyle and nutrition types on plasma lipid fatty acids composition in indigenous inhabitants of russian european north. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2012;14(2):557-560. (In Russ.).

48. Bergheanu SC, Bodde MC, Jukema JW. Pathophysiology and treatment of atherosclerosis: Current view and future perspective on lipoprotein modification treatment. Neth Heart J. 2017;25(4):231-242. doi: https://doi.org/10.1007/s12471-017-0959-2

49. Gusev EYu, Zotova NV, Zhuravleva YuA, Chereshnev VA. Physiological and pathogenic role of scavenger receptors in humans. Meditsinskaya immunologiya. 2020;22(1):7-48. (In Russ.). doi: https://doi.org/10.15789/1563-0625-PAP-1893

50. Nosalski R, Guzik TJ. Perivascular adipose tissue inflammation in vascular disease. Br J Pharmacol. 2017;174(20):3496-3513. doi: https://doi.org/10.1111/bph.13705

51. Urbanski K, Ludew D, Filip G, et al. CD14+CD16++ “nonclassical” monocytes are associated with endothelial dysfunction in patients with coronary artery disease. Thromb Haemost. 2017;117(5):971-980. doi: https://doi.org/10.1160/TH16-08-0614

52. Nosalski R, McGinnigle E, Siedlinski M, Guzik TJ. Novel Immune Mechanisms in Hypertension and Cardiovascular Risk. Curr Cardiovasc Risk Rep. 2017;11(4):12. doi: https://doi.org/10.1007/s12170-017-0537-6

53. McEver RP. Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc Res. 2015;107(3):331-339. doi: https://doi.org/10.1093/cvr/cvv154

54. Liu L, Wang Y, Cao Z, et al. Up‐regulated TLR 4 in cardiomyocytes exacerbates heart failure after long‐term myocardial infarction. J Cell Mol Med. 2015;19(12):2728-2740. doi: https://doi.org/10.1111/jcmm.12659

55. Skiba DS, Nosalski R, Mikolajczyk TP, et al. Anti-atherosclerotic effect of ang- (1–7) non-peptide mimetic (AVE 0991) is mediated by inhibition of perivascular and plaque inflammation in early atherosclerosis. Br J Pharmacol. 2017;174(22):4055-4069. doi: https://doi.org/10.1111/bph.13685

56. Itani HA, McMaster WG, Saleh MA, et al. Activation of Human T Cells in Hypertension. Hypertension. 2016;68(1):123-132. doi: https://doi.org/10.1161/HYPERTENSIONAHA.116.07237

57. Biancardi VC, Bomfim GF, Reis WL, et al. The interplay between Angiotensin II, TLR4 and hypertension. Pharmacol Res. 2017;120(1):88-96. doi: https://doi.org/10.1016/j.phrs.2017.03.017

58. Jiang Y, Lu L, Hu Y, et al. Resistin Induces Hypertension and Insulin Resistance in Mice via a TLR4-Dependent Pathway. Sci Rep. 2016;6(1):22193. doi: https://doi.org/10.1038/srep22193

59. Rodriguez-Iturbe B, Pons H, Johnson RJ. Role of the Immune System in Hypertension. Physiol Rev. 2017;97(3):1127-1164. doi: https://doi.org/10.1152/physrev.00031.2016


Supplementary files

1. Figure 1. Schematic diagram of the pathogenesis of the metabolic syndrome [adapted from 13].
Subject
Type Other
View (626KB)    
Indexing metadata ▾
2. Figure 2. Role of adipokines in cardiovascular diseases [adapted from 25].
Subject
Type Исследовательские инструменты
View (588KB)    
Indexing metadata ▾
3. Figure 3. Connection between oxidative stress, insulin resistance and inflammation.
Subject
Type Исследовательские инструменты
View (520KB)    
Indexing metadata ▾

Review

For citations:


Anikin D.A., Solovyeva I.A., Demko I.V., Sobko E.A., Kraposhina A.Yu., Gordeeva N.V. Free-radical oxidation as a pathogenetic factor of metabolic syndrome. Obesity and metabolism. 2022;19(3):306-316. (In Russ.) https://doi.org/10.14341/omet12804

Views: 4693


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)