Preview

Obesity and metabolism

Advanced search

Endocrine disruptors in the pathogenesis of socially significant diseases such as diabetes mellitus, malignant neoplasms, cardiovascular diseases, pathology of the reproductive system

https://doi.org/10.14341/omet12757

Abstract

Some environmental chemicals capable of interfering with the endocrine regulation of energy metabolism and the structure of adipose tissue in the function of the reproductive, immune, cardiovascular and other systems are called endocrine disruptors or disruptors. According to the WHO definition, the term «endocrine disruptors» means: «Exogenous substances or mixtures thereof that alter the function (s) of the endocrine system and, as a result, cause adverse effects in the intact organism or in its offspring, or (sub) population.» This includes compounds to which humanity is exposed in daily life as a result of their use in pesticides, herbicides, industrial and household products, plastics, detergents, refractory impregnations and as ingredients in personal care products. This review will present the latest scientific data on various ERs, such as persistent organic pollutants (POPs): pesticides (mirex, chlordecane, endosulfan, hexachlorobenzene-HCB dichlorodiphenyltrichloroethane-DDT and its metabolites), industrial chemicals (bisphenol A, polybrominated ether -PBDE, polychlorinated biphenyls-PCB, nonylphenol, dioxins, perfluorooctanoic acid-PFOA, phthalates), pharmaceuticals (diethylstilbestrol-DES). ERs are regarded as compounds that cause obesity, since they have the ability to influence cellular processes associated with adipose tissue, initiating changes in lipid metabolism and adipogenesis. Analysis of scientific materials on this issue indicates that ERs are ubiquitous in the environment and have a detrimental effect on the health of animals and mankind. The scientific and practical interest in this article is based on the growing statistics of the development of such socially significant pathologies as obesity and related diseases, including diabetes mellitus, metabolic syndrome, cardiovascular diseases, menstrual irregularities, as well as cancer and infertility, for of which obesity is a risk factor.

About the Authors

A. A. Evteeva
Saratov State Medical University named after V. I. Razumovsky
Russian Federation

Anastasia A. Evteeva, resident

137 Dm. Bolshaya Sadovaya street, 410054 Saratov, Russia



M. S. Sheremeta
The National Medical Research Center for Endocrinology

Marina S. Sheremeta, MD, PhD

Moscow



E. A. Pigarova
The National Medical Research Center for Endocrinology

Ekaterina A. Pigarova, MD, PhD

Moscow



References

1. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. Clinical Endocrinology & Metabolism. 2004;89:2548-56. https://doi.org/10.1210/jc.2004-0395

2. Darbre PD. Endocrine disruption and human health. New York: Academic; 2015. doi: https://doi.org/10.1016/b978-0-12-801139-3.00008-9

3. Global assessment of the state-of-the-science of endocrine disruptors. Geneva, Switzerland, World Health Organization. International Programme on Chemical Safety. 2002. Available at: http://www.who.int/ ipcs/publications/new_issues/endocrine_ disruptors/en/

4. Soto AM, Chung KL, Sonnenschein C. The pesticides endosulfan, toxaphene, and dieldrin have estrogenic effects on human estrogen-sensitive cells. Environ. Health Perspect. 1994;102:380-383. doi: https://doi.org/10.1289/ehp.94102380

5. Fang H, Tong W, Branham, et al. Study of 202 natural, synthetic, and environmental chemicals for binding to the androgen receptor. Chem. Res. Toxicol. 2003;16:1338-1358. doi: https://doi.org/10.1021/tx030011g

6. Morinaga H, Yanase T, Nomura M, et al. A benzimidazole fungicide, benomyl, and its metabolite, carbendazim, induce aromatase activity in a human ovarian granulose-like tumor cell line (KGN). Endocrinology. 2004;145:1860-1869. doi: https://doi.org/10.1210/en.2003-1182

7. Andersen HR, Vinggaard AM, Rasmussen TH, et al. Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicology and Applied Pharmacology. 2001;179:1-12. doi: https://doi.org/10.1006/taap.2001.9347

8. Sanderson JT. 2-Chloro-s-triazine herbicides induce aromatase (CYP19) activity in H295R human adrenocortical carcinoma cells: A novel mechanism for estrogenicity? Toxicological Sciences. 2000;54:121-127. doi: https://doi.org/10.1016/j.tox.2012.06.009

9. Akingbemi BT, Klinefelter GR, Gunsalus GL, et al. A metabolite of methoxychlor, 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane, reduces testosterone biosynthesis in rat leydig cells through suppression of steady-state messenger ribonucleic acid levels of the cholesterol side-chain cleavage enzyme. Biology of Reproduction. 2000;62:571-578. doi: https://doi.org/10.1095/biolreprod62.3.571

10. Padmanabhan V, Cardoso RC, Puttabyatappa M. Developmental Programming, a Pathway to Disease. Endocrinology. 2016;157:1328-1340. doi: https://doi.org/10.1210/en.2016-1003

11. Kirkley AG, Sargis RM. Environmental endocrine disruption of energy metabolism and cardiovascular risk. Current Diabetes Reports. 2014;14:494. doi: https://doi.org/10.1007/s11892-014-0494-0

12. Trevino LS, Wang Q, Walker CL. Hypothesis: Activation of rapid signaling by environmental estrogens and epigenetic reprogramming in breast cancer. Reproductive Toxicology. 2015;54:136-140. doi: https://doi.org/10.1016/j.reprotox.2014.12.014

13. Barker DJ. The origins of the developmental origins theory. J. Internal Medicine. 2007;261:412-417. doi: https://doi.org/10.1111/j.1365-2796.2007.01809.

14. World Health Organization (WHO). Obesity and Overweight. Geneva, Switzerland: WHO. Available from: http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

15. Banes CJ. Firefighters’ cardiovascular risk behaviors: Effective Interventions and Cultural Congruence. Workplace Health & Safety. 2014;62:27-34. doi: https://doi.org/10.3928/21650799-20131220-05

16. Hectors TL, Vanparys C, van der Ven K, et al. Environmental pollutants and type 2 diabetes: a review of mechanisms that can disrupt beta cell function. Diabetologia. 2011;54:1273-1290. doi: https://doi.org/10.1007/s00125-011-2109-5

17. Heindel JJ, Blumberg B, Cave M, et al. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol. 2017;68:3-33. doi: https://doi.org/10.1016/j.reprotox.2016.10.001

18. Liu C, Shi Y, Li H, et al. p,p′-DDE Disturbs the Homeostasis of Thyroid Hormones via Thyroid Hormone Receptors, Transthyretin, and Hepatic Enzymes. Hormone and Metabolic Research. 2011;43:391-396. doi: https://doi.org/10.1055/s-0031-1277135

19. Capen CC. Mechanisms of chemical injury of thyroid gland. Progress in Clinical and Biological Research. 1994;387:173-191. doi: https://europepmc.org/article/med/7526405

20. Kodavanti PRS. Neurotoxicity of persistent organic pollutants: possible modes of action and further consideration. Dose Response. 2005;3:273-305. doi: https://doi.org/10.2203/dose-response.003.03.002

21. Dickerson S, Cunningham S, Patisaul H, et al. Endocrine disruption of brain sexual differentiation by developmental PCB exposure. Endocrinology. 2011; 152 (2): 581-594. doi: https://doi.org/10.1210/en.2010-1103

22. Thomas P, Dong J. Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J.Steroid Biochemistry and Molecular Biology. 2006;102(1-5):175-179. doi: https://doi.org/10.1016/j.jsbmb.2006.09.017

23. Jones DC, Miller GW. The effects of environmental neurotoxicants on the dopaminergic system: a possible role in drug addiction. Biochemical Pharmacology. 2008;76(5):569-581. doi: https://doi.org/10.1016/j.bcp.2008.05.010

24. Rubin BS. Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. Steroid Biochemistry and Molecular Biology. 2011;127(1-2):27-34. doi: https://doi.org/10.1016/j.jsbmb.2011.05.002

25. Kamrin MA. Phthalate risks, phthalate regulation and public health: a review. J Toxicology and Environmental Health, Part. 2009;12:157-174. doi: https://doi.org/10.1080/10937400902729226

26. Huang PC, Liou SH, Ho IK, et al. Phthalates exposure and endocrinal effects: an epidemiological review. J Food Drug Analysis. 2012;20:719-733. doi: https://www.researchgate.net/profile/Po-Chin-Huang/publication/280919371

27. Koreneva EM, Karpenko NA, Kazak VA. Exogenous factors of hypofertility. Components of plastics — phthalates. Reproductive endocrinology. 2011;2:62-67 (in Russ.).

28. Hallgren S, Sinjari T, Håkansson H, et al. Effects of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) on thyroid hormone and vitamin A levels in rats and mice. Archives of Toxicology. 2001;75:200-208. doi: https://doi.org/10.1007/s002040000208

29. Lema S, Dickey J, Schultz I, Swanson P. Dietary Exposure to 2,2′,4,4′-tetrabromodiphenyl ether (PBDE-47) alters thyroid status and thyroid hormone-regulated gene Ttranscription in the pituitary and brain. Environmental Health Perspectives. 2008; 116(12):1694-1699. doi: https://doi.org/10.1289/ehp.11570

30. Szabo D, Richardson V, Ross D, et al. Effects of perinatal PDBE exoposure on hepatic phase I, phase II, phase III, and deiodinase 1 gene expression involved in thyroid hormone metabolism in rat male pups. Toxicological Sciences. 2009;107(1):27-39. doi: https://doi.org/10.1093/toxsci/kfn230

31. Kitamura S, Shinohara S, Iwase E, et al. Affinity for thyroid hormone and estrogen receptors of hydroxylated polybrominated diphenyl ethers. J Health Science. 2008; 54:607-614. doi: https://doi.org/10.1248/jhs.54.607

32. Li F, Xie Q, Li XH, et al. Hormone activity of hydroxylated polybrominated diphenyl ethers on human thyroid receptor-beta: in vitro and in silico investigations. Environmental Health Perspectives. 2010;118:602-606. doi: https://doi.org/10.1289/ehp.0901457

33. Talsness CE, Shakibaei M, Kuriyama SN, et al. Ultrastructural changes observed in rat ovaries following in utero and lactational exposure to low doses of a polybrominated flame retardant. Toxicol Lett. 2005;157(3):189-202. doi: https://doi.org/10.1016/j.toxlet.2005.02.001

34. White R, Jobling S, Hoare SA, et al. Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology. 1994;135:175-82. doi: https://doi.org/10.1210/endo.135.1.8013351

35. Darbre PD, Harvey PW. Parabens can enable hallmarks and characteristics of cancer in human breast epithelial cells: a review of the literature with reference to new exposure data and regulatory status. J Applied Toxicology. 2014;34:925-938. doi: https://doi.org/10.1002/jat.3027

36. Kishi R, Nakajima T, Goudarzi H, et al. The Association of Prenatal Exposure to Perfluorinated Chemicals with Maternal Essential and Long-Chain Polyunsatu- rated Fatty Acids during Pregnancy and the Birth Weight of Their Offspring: The Hokkaido Study. Environmental Health Perspectives. 2015;123(10):1038-1045. doi: https://doi.org/10.1289/ehp.1408834

37. Barry V, Darrow LA, Klein M, et al. Early life perfluorooctanoic acid (PFOA) exposure and overweight and obesity risk in adulthood in a community with elevated exposure. Environmental Research. 2014;132:62-69. doi: https://doi.org/10.1016/j.envres.2014.03.025

38. Pavuk M, Schecter A, Akhtar F, et al. Serum 2,3,7,8-tetrachlorodibenzo-p-dioxin levels and thyroid function in air force veterans of the Vietnam war. Annals Epidimiology. 2003;13:335-343. doi: https://doi.org/10.1016/s1047-2797(02)00422-2

39. Spalding KL, Arner E, Westermark PO, et al. Dynamics of fat cell turnover in humans. Nature. 2008;453:783-787. doi: https://doi.org/10.1038/nature06902

40. Grun F, Blumberg B. Perturbed nuclear receptor signaling by environmental obesogens as emerging factors in the obesity crisis. Reviews in Endocrine and Metabolic Disorders . 2007;8:161-171. doi: https://doi.org/10.1007/s11154-007-9049-x

41. Arsenescu V, Arsenscu RI, King V, et al. Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis Environmental Health Perspectives. 2008;116:761-768. doi: https://doi.org/10.1289/ehp.10554

42. Saal FS, Nagel SC, Coe BL, et al. The estrogenic endocrine disrupting chemical bisphenol A (BPA) and obesity. Molecular and Cellular Endocrinology. 2012;354:74-84. doi: https://doi.org/10.1016/j.mce.2012.01.001

43. Ivry Del Moral L, LeCorre L, Poirier H, et al. Obesogen effects after perinatal exposure of 4,4′-sulfonyldiphenol (bisphenol S) in C57BL/6 mice. Toxicology. 2016;357-358:11. doi: https://doi.org/10.1016/j.tox.2016.05.02320.

44. Patisaul HB, et al. Accumulation and endocrine disrupting effects of the flame retardant mixture Firemaster® 550 in rats: an exploratory assessment. J Biochemical and Molecular Toxicology. 2013;27:124-136. doi: https://doi.org/10.1002/jbt.21439

45. Hu P, Kennedy RC, Chen X, et al. Differential effects on adiposity and serum marker of bone formation by post-weaning exposure to methylparaben and butylparaben. Environmental Science and Pollution Research. 2016;23:21957-21968. doi: https://doi.org/10.1007/s11356-016-7452-0

46. Garcia-Arevalo M, Alonso-Magdalena P, Servitja JM, et al. Maternal Exposure to Bisphenol-A During Pregnancy Increases Pancreatic beta-Cell Growth During Early Life in Male Mice Offspring. Endocrinology. 2016;157:4158-4171. doi: https://doi.org/10.1210/en.2016-1390

47. Chamorro-Garcia R, Sahu M, Abbey RJ, et al. Transgenerational inheritance of increased fat depot size, stem cell reprogramming, and hepatic steatosis elicited by prenatal exposure to the obesogen tributyltin in mice. Environmental Health Perspectives. 2013;3:359-366. doi: https://doi.org/10.1289/ehp.1205701

48. Manikkam M, Tracey R, Guerrero-Bosagna C, et al. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One. 2013;8:e55387. doi: https://doi.org/10.1371/journal.pone.0055387

49. Skinner MK, Manikkam M, Tracey R, et al. Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity. BMC Medicine. 2013;11:1. doi: https://doi.org/10.1186/1741-7015-11-228

50. Tang-Peronard JL, et al. Association between prenatal polychlorinated biphenyl exposure and obesity development at ages 5 and 7 years: a prospective cohort study of 656 children from the Faroe Islands. American Journal of Clinical Nutrition. 2014;99:5-13. doi: https://doi.org/10.3945/ajcn.113.066720

51. Vafeiadi M, Roumeliotaki T, Myridakis A, et al. Association of early life exposure to bisphenol A with obesity and cardiometabolic traits in childhood. Environmental Research. 2016;146:379-387. doi: https://doi.org/10.1016/j.envres.2016.01.017

52. Betts KS. Perfluoroalkyl acids: What is the evidence telling us? Environmental. Health Perspectives. 2007;115:A250-A256. doi: https://doi.org/10.1289/ehp.115-a250

53. Odegaard JI, Chawla A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science. 2013;339:172-177. doi: https://doi.org/10.1126/science.1230721

54. Hauner H, Petruschke T, Russ M, et al. Effects of tumour necrosis factor alpha (TNF alpha) on glucose transport and lipid metabolism of newly-differentiated human fat cells in cell culture. Diabetologia. 1995;38:764-771. doi: https://doi.org/10.1007/s001250050350

55. Lin Y, Wei J, Li Y, et al. Developmental exposure to di(2-ethylhexyl) phthalate impairs endocrine pancreas and leads to long-term adverse effects on glucose homeostasis in the rat. American Journal of Physiology-Endocrinology and Metabolism. 2011;301:E527-E538. doi: https://doi.org/10.1152/ajpendo.00233.2011

56. Bohacek J, Mansuy IM. Epigenetic inheritance of disease and disease risk. Neuropsychopharmacology. 2013;38:220-236. doi: https://doi.org/10.1038/npp.2012.110

57. Bodin J, Stene LC, Nygaard UC. Can exposure to environmental chemicals increase the risk of diabetes type 1 development? BioMed Research International. 2015;2015:1-19. doi: https://doi.org/10.1155/2015/208947

58. Lind L, Zethelius B, Salihovic S, et al. Circulating levels of perfluoroalkyl substances and prevalent diabetes in the elderly. Diabetologia. 2014;57:473-479. doi: https://doi.org/10.1007/s00125-013-3126-3

59. Hectors TL, Vanparys C, van der Ven K, et al. Environmental pollutants and type 2 diabetes: a review of mechanisms that can disrupt beta cell function. Diabetologia. 2011;54:1273-1290. doi: https://doi.org/10.1007/s00125-011-2109-5

60. Lee DH, Steffes MW, Sjodin A, et al. Low dose organochlorine pesticides and polychlorinated biphenyls predict obesity, dyslipidemia, and insulin resistance among people free of diabetes. PLoS ONE. 2011;6:e15977. doi: https://doi.org/10.1371/journal.pone.0015977

61. Kaiser JP, Lipscomb JC, Wesselkamper SC. Putative mechanisms of environmental chemical-induced steatosis. International Journal of Toxicology. 2012;31:551-563. doi: https://doi.org/10.1177/1091581812466418

62. Angrish MM, Dominici CY, Zacharewski TR. TCDD-elicited effects on liver, serum, and adipose lipid composition in C57BL/6 mice. Toxicological Sciences. 2013;131:108-115. doi: https://doi.org/10.1093/toxsci/kfs277

63. Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73-84. doi: https://doi.org/10.1002/hep.28431

64. Anderson EL, Howe LD, Jones HE., et al. The Prevalence of Non-Alcoholic Fatty Liver Disease in Children and Adolescents: A Systematic Review and Meta-Analysis. PLoS ONE. 2015;10:e0140908. doi: https://doi.org/10.1371/journal.pone.0140908

65. Gray SL, Shaw AC, Gagne AX, et al. Chronic exposure to PCBs (Aroclor 1254) exacerbates obesity-induced insulin resistance and hyperinsulinemia in mice. Journal of Toxicology and Environmental Health, Part A. 2013;76:701-715. doi: https://doi.org/10.1080/15287394.2013.796503

66. D’Souza A, Hussain M, Howarth FC, et al. Pathogenesis and pathophysiology of accelerated atherosclerosis in the diabetic heart. Molecular and Cellular Biochemistry. 2009;331:89-116. doi: https://doi.org/10.1007/s11010-009-0148-8

67. Chan SH, Wu CW, Chang AY, et al. Transcriptional upregulation of brain-derived neurotrophic factor in rostral ventrolateral medulla by angiotensin II: Significance in superoxide homeostasis and neural regulation of arterial pressure. Circulation Research. 2010;107:1127-1139. doi: https://doi.org/10.1161/circresaha.110.225573

68. Xie A, Walker NJ, Wang D. Dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin) enhances triggered afterdepolarizations in rat ventricular myocytes. Cardiovascular Toxicology. 2006;6:99-110. doi: https://doi.org/10.1385/ct:6:2:99

69. Choi BR, Burton F, Salama G. Cytosolic Ca2+ triggers early afterdepolarizations and Torsade de Pointes in rabbit hearts with type 2 long QT syndrome. The Journal of Physiology. 2002;543:615-631. doi: https://doi.org/10.1113/jphysiol.2002.024570

70. Cranefield P.F. Action potentials, afterpotentials, and arrhythmias. Circulation Research. 1977;41:415-423. doi: https://doi.org/10.1161/01.res.41.4.415

71. Moon JM, Chun BJ. Acute endosulfan poisoning: A retrospective study. Human & Experimental Toxicology. 2009;28:309-316. doi: https://doi.org/10.1177/0960327109106488

72. LaMarca HL, Rosen JM. Estrogen regulation of mammary gland development and breast cancer: Amphiregulin takes center stage. Breast Cancer Research. 2007;9:304. doi: https://doi.org/10.1186/bcr1740

73. VoPham T, Brooks MM, Yuan JM, et al. Pesticide exposure and hepatocellular carcinoma risk: A case-control study using a geographic information system (GIS) to link SEER-Medicare and California pesticide data. Environmental Research. 2015;143:68-82. doi: https://doi.org/10.1016/j.envres.2015.09.027

74. Clary T, Ritz B. Pancreatic cancer mortality and organochlorine pesticide exposure in California, 1989-1996. American Journal of Industrial Medicine. 2003;43:306-313. doi: https://doi.org/10.1002/ajim.10188

75. Nagayama J, Tsuji H, Iida T, et al. Immunologic effects of perinatal exposure to dioxins, PCBs and organochlorine pesticides in Japanese infants. Chemosphere. 2007;67:S393-S398. doi: https://doi.org/10.1016/j.chemosphere.2006.05.134

76. Stanculescu D, Margaritescu C, Stepan A, et al. E-cadherin in gastric carcinomas related to histological prognostic parameters. Romanian Journal Morphology & Embryology. 2011;52:1107-1112.

77. Walker BE. Tumors of Female Offspring of Mice Exposed Prenatally to Diethylstilbestrol. Journal of the National Cancer Institute. 1984;73:133-140. doi: https://doi.org/10.1093/jnci/73.1.133.

78. Backlin BM, Persson E, Jones CJ, et al. Polychlorinated biphenyl (PCB) exposure produces placental vascular and trophoblastic lesions in the mink (Mustela vison): A light and electron microscopic study. APMIS. 1998;106:785-799. doi: https://doi.org/10.1111/j.1699-0463.1998.tb00225.x

79. Virtanen HE, Main KM, Skakkebaek NE, et al. Testicular dysgenesis syndrome and the development and occurrence of male reproductive disorders. Toxicology and Applied Pharmacology. 2005;207:501-505. doi: https://doi.org/10.1016/j.taap.2005.01.058

80. Tomczak S, Baumann K, Lehnert G. Occupational exposure to hexachlorocyclohexane. IV. Sex hormone alterations in HCH-exposed workers. International Archives of Occupational and Environmental Health. 1981;48:283-287. https://doi.org/10.1007/bf00405615

81. Multigner L, Ndong JR, Giusti A, et al. Chlordecone exposure and risk of prostate cancer. Journal of Clinical Oncology. 2010;28:3457-3462. doi: https://doi.org/10.1200/jco.2009.27.2153

82. Guo LW, Wu Q, Green B, et al. Cytotoxicity and inhibitory effects of low-concentration triclosan on adipogenic differentiation of human mesenchymal stem cells. Toxicology and Applied Pharmacology. 2012;262(2):117-123. doi: https://doi.org/10.1016/j.taap.2012.04.024


Review

For citations:


Evteeva A.A., Sheremeta M.S., Pigarova E.A. Endocrine disruptors in the pathogenesis of socially significant diseases such as diabetes mellitus, malignant neoplasms, cardiovascular diseases, pathology of the reproductive system. Obesity and metabolism. 2021;18(3):327-335. (In Russ.) https://doi.org/10.14341/omet12757

Views: 4009


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)