Preview

Obesity and metabolism

Advanced search

Risks for development of metabolic disorders in alimentary constitutional obesity

https://doi.org/10.14341/omet12705

Abstract

BACKGROUND: alimentary-constitutional obesity due to it’s high prevalence, is the key problem of modern healthcare system. However, obesity is not always accompanied with metabolic disorders, leading to early invalidization and mortality. That’s why it is important to study risks of metabolical nonhealth in obesity.

AIM: to detect factors, increasing risks of development of metabolic disbalance in alimentary-constitutional obesity.

MATERIALS AND METHODS: In patients with alimentary-constitutional obesity there was performed an examination including anthropometry (body mass index, Waist Circumference, Hip Circumference,waist to hip ratio), blood pressure measurement, laboratory tests – metabolic indexes: glucose, insulin, insulin resistance indexes, leptin, cholesterol, cholesterol of lipoproteins, triglycerides, aspartate aminotransferase, alanine aminotransferase, gamma-glutamiltransferase), body composition measurement by bioelectrical impedance analysis; patients were also interviewed on their behavior (food habits) and physical activity.

RESULTS: There were formed two groups depending on metabolic health indexes: main group – metabolically non-healthy obesity (MNHO) - 241 persons (aged 41±12,09, duration of obesity 12,5±9,51 years) with alimentary-constitutional obesity and two or more signs of MS, a comparison group – of metabolically healthy obesity (MHO) – 120 persons (aged 35,5±10,03; p<0,05, duration of obesity 8,0±7,39 years; p<0,05) with alimentary-constitutional obesity and one sign of MS or without it. Data analysis of studied risk factors for development of metabolically non-healthy alimentary-constitutional obesity confirmed that most relevant factor in development of MNHO is abdominal fat mass distribution (increasing of Waist Circumference over 88 sm in females and over 102 sm in mails). At the same time MNHO had correlation not only with classical signs of MS, but also with blood insulin level, insulin resistance indexes, fat metabolism disbalance and liver disfunction. More severed risk for appearance of metabolic disorders have patients over 45 years old with decreased active cell mass (less than 45%), duration of obesity above 10 years and obesity-burdened heredity. In food habits risk of development of metabolically non-healthy obesity was increased in taking of fat milk food, and, on the contrary, - frequent snacks, alcohol free sweet drinks didn’t affect it.

CONCLUSION: Development of MNHO is associated not only with the age of patient, duration of obesity, carbohydrate and fat metabolism indexes, but also with decreased percentage of metabolically active tissues and some food habits.

About the Authors

M. B. Lyasnikova
Tver State Medical Universi
Russian Federation

Mariya B. Lyasnikova - MD, PhD; eLibrary SPIN: 2794-6812


Competing Interests:

none



N. A. Belyakova
Tver State Medical Universi
Russian Federation

Nataliya A. Belyakova - MD, PhD, Professor; eLibrary SPIN: 4357-5266.

4 Sovetskay street, 170100 Tver


Competing Interests:

none



I. G. Tsvetkova
Tver State Medical Universi
Russian Federation

Inna G. Tsvetkova - MD, PhD; eLibrary SPIN: 1152-8179


Competing Interests:

none



A. A. Rodionov
Tver State Medical Universi
Russian Federation

Andrey A. Rodionov - MD, PhD; eLibrary SPIN: 8175-4965


Competing Interests:

none



N. O. Milaya
Tver State Medical Universi
Russian Federation

Competing Interests:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи



References

1. Kopelman PG. Obesity as a medical problem. Nature. 2000;404(6778):635-643. doi: https://doi.org/10.1038/35007508

2. González-Muniesa P, Mártinez-González M-A, Hu FB, et al. Obesity. Nat Rev Dis Prim. 2017;3(1):17034. doi: https://doi.org/10.1038/nrdp.2017.34

3. Di Angelantonio E, Bhupathiraju SN, Wormser D, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016;388(10046):776-786. doi: https://doi.org/10.1016/S0140-6736(16)30175-1

4. Tchernof A, Després J-P. Pathophysiology of Human Visceral Obesity: An Update. Zmijewski M, ed. Physiol Rev. 2013;93(1):359-404. doi: https://doi.org/10.1152/physrev.00033.2011

5. Mayoral L-C, Andrade G, Mayoral E-C, et al. Obesity subtypes, related biomarkers &amp; heterogeneity. Indian J Med Res. 2020;151(1):11. doi: https://doi.org/10.4103/ijmr.IJMR_1768_17

6. Goossens GH. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav. 2008;94(2):206-218. doi: https://doi.org/10.1016/j.physbeh.2007.10.010

7. Rosen ED, Spiegelman BM. What We Talk About When We Talk About Fat. Cell. 2014;156(1-2):20-44. doi: https://doi.org/10.1016/j.cell.2013.12.012

8. Stinkens R, Goossens GH, Jocken JWE, Blaak EE. Targeting fatty acid metabolism to improve glucose metabolism. Obes Rev. 2015;16(9):715-757. doi: https://doi.org/10.1111/obr.12298

9. Wildman RP. The Obese Without Cardiometabolic Risk Factor Clustering and the Normal Weight With Cardiometabolic Risk Factor Clustering. Arch Intern Med. 2008;168(15):1617. doi: https://doi.org/10.1001/archinte.168.15.1617

10. World Health Organization. Obesity: preventing and managing the global epidemic. Geneva:WHO, 1997. Available from: http://www.who.int/nutrition/publications/obesity/WHO_TRS_894/en/

11. Expert Panel on Detection, Evaluation and T of HBC in A. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA J Am Med Assoc. 2001;285(19):2486-2497. doi: https://doi.org/10.1001/jama.285.19.2486

12. Bloomgarden ZT. American Association of Clinical Endocrinologists (AACE) Consensus Conference on the Insulin Resistance Syndrome. Diabetes Care. 2003;26(3):933-939. doi: https://doi.org/10.2337/diacare.26.3.933

13. van Vliet-Ostaptchouk JV, Nuotio M-L, Slagter SN, et al. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large cohort studies. BMC Endocr Disord. 2014;14(1):9. doi: https://doi.org/10.1186/1472-6823-14-9

14. Beck AT. А systematic investigation of depression. Comprehensive Psychiatry. 1961;2(3):163–170.

15. Karelin AA. Bolshaya encyklopedia psykhologicheskih testov. Moscow; 2007.416 p. (In Russ.).

16. van Strien T, Frijters JER, Bergers GPA, Defares PB. The Dutch Eating Behavior Questionnaire (DEBQ) for assessment of restrained, emotional, and external eating behavior. Int J Eat Disord. 1986;5(2):295-315. doi: https://doi.org/10.1002/1098-108X(198602)5:2<295::AID-EAT2260050209>3.0.CO;2-T

17. Belyakova NA, Milaya NO, Lyasnikova MB. Anketirovanie po pitaniyu i fizicheskim nagruzkam. Registratsionnyi nomer 01-126, data registratsii 28.06.2019. (In Russ.).

18. Morbidnoe ozhirenie. Ed. by Dedov II. Moscow: Izdatel’stvo «Meditsinskoe informatsionnoe agentstvo»; 2014. 605 p. (In Russ.).

19. Piché M-E, Tchernof A, Després J-P. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ Res. 2020;126(11):1477-1500. doi: https://doi.org/10.1161/CIRCRESAHA.120.316101

20. Seravalle G, Grassi G. Obesity and hypertension. Pharmacol Res. 2017;122:1-7. doi: https://doi.org/10.1016/j.phrs.2017.05.013

21. Vecchié A, Dallegri F, Carbone F, et al. Obesity phenotypes and their paradoxical association with cardiovascular diseases. Eur J Intern Med. 2018;48:6-17. doi: https://doi.org/10.1016/j.ejim.2017.10.020

22. Pischon T, Nimptsch K. Obesity and Risk of Cancer: An Introductory Overview. In: Recent Results in Cancer Research. 2016;208:1-15. doi: https://doi.org/10.1007/978-3-319-42542-9_1

23. Jung C.H. Metabolically healthy obesity: a friend or foe? Korean J Intern Med. 2017;32(4):611-621. doi: https://doi.org/10.3904/kjim.2016.259

24. Romantzova T.I. Ostrovskaya E.V. Metabolicheski zdorovoye ozhirenie: definitzii, protectivniye faktory, klinicheskoye znachenije. Almanah klin med. 2015;S1:75-86 (In Russ.).

25. Ostrovskaja EV, Romancova TI, Gerasimov AN, Novoselova TE. Rasprostranennost’ metabolicheski zdorovogo ozhirenija po dannym vyborki Moskovskogo regiona. Ozhirenie i metabolizm. 2017;14(4):51-56. (In Russ.). doi: https://doi.org/10.14341/omet2017451-56

26. Al Suwaidi J. Is there an increased cardiovascular risk in metabolically healthy obese individuals? Lessons from the HUNT (Nord-Trøndelag Health) study. Glob Cardiol Sci Pract. 2014;2014(2):24. doi: https://doi.org/10.5339/gcsp.2014.24

27. Meigs JB, Wilson PWF, Fox CS, et al. Body Mass Index, Metabolic Syndrome, and Risk of Type 2 Diabetes or Cardiovascular Disease. J Clin Endocrinol Metab. 2006;91(8):2906-2912. doi: https://doi.org/10.1210/jc.2006-0594

28. Luo D, Liu F, Li X, et al. Comparison of the effect of ‘metabolically healthy but obese’ and ‘metabolically abnormal but not obese’ phenotypes on development of diabetes and cardiovascular disease in Chinese. Endocrine. 2015;49(1):130-138. doi: https://doi.org/10.1007/s12020-014-0444-2

29. Appleton SL, Seaborn CJ, Visvanathan R, et al. Diabetes and Cardiovascular Disease Outcomes in the Metabolically Healthy Obese Phenotype. Diabetes Care. 2013;36(8):2388-2394. doi: https://doi.org/10.2337/dc12-1971

30. Soriguer F, Gutiérrez-Repiso C, Rubio-Martín E, et al. Metabolically Healthy but Obese, a Matter of Time? Findings From the Prospective Pizarra Study. J Clin Endocrinol Metab. 2013;98(6):2318-2325. doi: https://doi.org/10.1210/jc.2012-4253

31. Rotarh OP. Rasprostranyonnost kardiometabolitcheskih narushenij, porazheniya organov misheney i mekhanizm ih progressirovaniya u ofisnykh rabotnokov. [dissertation]. Saint-Petersburg; 2016. 221 p. (In Russ.).

32. Kramer CK, Zinman B, Retnakaran R. Are Metabolically Healthy Overweight and Obesity Benign Conditions? Ann Intern Med. 2013;159(11):758-769. doi: https://doi.org/10.7326/0003-4819-159-11-201312030-00008

33. Fan J, Song Y, Chen Y, et al. Combined effect of obesity and cardio-metabolic abnormality on the risk of cardiovascular disease: A meta-analysis of prospective cohort studies. Int J Cardiol. 2013;168(5):4761-4768. doi: https://doi.org/10.1016/j.ijcard.2013.07.230

34. Hamer M, Bell JA, Sabia S, et al. Stability of metabolically healthy obesity over 8 years: the English Longitudinal Study of Ageing. Eur J Endocrinol. 2015;173(5):703-708. doi: https://doi.org/10.1530/EJE-15-0449

35. Eshtiaghi R, Keihani S, Hosseinpanah F, et al. Natural course of metabolically healthy abdominal obese adults after 10 years of follow-up: the Tehran Lipid and Glucose Study. Int J Obes. 2015;39(3):514-519. doi: https://doi.org/10.1038/ijo.2014.176

36. Hwang Y-C, Hayashi T, Fujimoto WY, et al. Visceral abdominal fat accumulation predicts the conversion of metabolically healthy obese subjects to an unhealthy phenotype. Int J Obes. 2015;39(9):1365-1370. doi: https://doi.org/10.1038/ijo.2015.75

37. Heidemann C, Scheidt-Nave C, Richter A, Mensink GBM. Dietary patterns are associated with cardiometabolic risk factors in a representative study population of German adults. Br J Nutr. 2011;106(8):1253-1262. doi: https://doi.org/10.1017/S0007114511001504

38. Barry VW, Baruth M, Beets MW, et al. Fitness vs. Fatness on All-Cause Mortality: A Meta-Analysis. Prog Cardiovasc Dis. 2014;56(4):382-390. doi: https://doi.org/10.1016/j.pcad.2013.09.002

39. Uspenskij YP, Petrenko YV, Gulunov ZH, et al. Metabolitchesky syndrom. Uchebnoye posobiye. SPb.; 2017. 60 p. (in Russ.).

40. Lutsey PL, Steffen LM, Stevens J. Dietary Intake and the Development of the Metabolic Syndrome. Circulation. 2008;117(6):754-761. doi: https://doi.org/10.1161/CIRCULATIONAHA.107.716159


Supplementary files

1. Figure 1. Correlation between body mass index (BMI) and waist circumference (WC) in patients with metabolically unhealthy obesity.
Subject
Type Research Instrument
View (133KB)    
Indexing metadata ▾
2. Figure 2. Correlation between body mass index and insulin resistance index (HOMA-IR) in patients with metabolically unhealthy obesity.
Subject
Type Research Instrument
View (138KB)    
Indexing metadata ▾
3. Figure 3. Correlation between body mass index and plasma cholesterol in patients with metabolically unhealthy obesity.
Subject
Type Research Instrument
View (156KB)    
Indexing metadata ▾
4. Figure 4. Anamnestic and objective data that increase the risk of diagnosing metabolically unhealthy obesity.
Subject
Type Research Instrument
View (75KB)    
Indexing metadata ▾
5. Figure 5. Criteria for metabolic disorders and odds ratios in patients with alimentary-constitutional obesity.
Subject
Type Research Instrument
View (57KB)    
Indexing metadata ▾
6. Figure 6. Laboratory data and the risk of metabolic disorders (odds ratio) in patients with alimentary-constitutional obesity.
Subject
Type Research Instrument
View (86KB)    
Indexing metadata ▾
7. Figure 7. Dietary habits and risk of metabolic disorders in patients with alimentary-constitutional obesity.
Subject
Type Research Instrument
View (86KB)    
Indexing metadata ▾

Review

For citations:


Lyasnikova M.B., Belyakova N.A., Tsvetkova I.G., Rodionov A.A., Milaya N.O. Risks for development of metabolic disorders in alimentary constitutional obesity. Obesity and metabolism. 2021;18(4):406-416. (In Russ.) https://doi.org/10.14341/omet12705

Views: 1664


ISSN 2071-8713 (Print)
ISSN 2306-5524 (Online)