Prevalence and biomarkers in metabolic syndrome
https://doi.org/10.14341/omet12704
Abstract
The prevalence of metabolic syndrome (MS) has a worldwide tendency to increase and depends on many components, which explains the complexity of diagnostics and approaches to the prevention and treatment of this pathology. Age, lifestyle, socioeconomic status, insulin resistance (IR), dyslipidemia, obesity and genetic predisposition are factors influencing the risk of developing and progression of MS. Features of the distribution and dysfunction of adipose tissue are important factors in the development of IR, with obesity, as well as the risk of the formation of cardiometabolic diseases and MS. Understanding of mechanisms is linked to advances in metabolic phenotyping. Metabolic phenotyping of obese persons is important for the development of important diseases in relation to the study of the pathophysiology of metabolic disorders, the possible concomitant disease and the search for innovative strategies for the prevention and treatment of MS. The understanding of MS mechanisms is associated with advances in metabolic phenotyping. Therefore, the relevance of further study of the pathophysiological mechanisms underlying various metabolic phenotypes of MS is one of the promising areas of modern scientific research. This review summarizes the current literature data on the prevalence of MS depending on gender, age, population, area of residence, education, level of physical activity, and many other parameters. Metabolic risks of MS development are detailed. Biological markers of MS are considered. The necessity of metabolic phenotyping of MS has been shown, which may have potential therapeutic value.
About the Authors
O. Y. KytikovaRussian Federation
Oxana Yu. Kytikova, MD, PhD
73 G Russkaya street, 690105, Vladivostok, Russia
M. V. Antonyuk
Russian Federation
Marina V. Antonyuk, MD, PhD, Professor
Vladivostok
T. A. Kantur
Russian Federation
Tatyana A. Kantur, MD, PhD
Vladivostok
T. P. Novgorodtseva
Russian Federation
Tatyana Р. Novgorodtseva, MD, PhD, Professor
Vladivostok
Y. K. Denisenko
Russian Federation
Yuliya К. Denisenko, MD, PhD
Vladivostok
References
1. Rekomendacii po vedeniju bol’nyh s metabolicheskim sindromom. Klinicheskie rekomendacii. Moscow: 2013. 43 p. (In Russ.).
2. Kuschnir MCC, Bloch KV, Szklo M, et al. ERICA: prevalence of metabolic syndrome in Brazilian adolescents. Revista de saúde Pública. 2016;50(11):256–268. doi: https://doi.org/10.1590/S01518-8787.2016050006701.
3. Xiang Y, Zhou W, Duan X, et al. Metabolic Syndrome, and Particularly the Hypertriglyceridemic-Waist Phenotype, Increases Breast Cancer Risk, and Adiponectin Is a Potential Mechanism: A Case-Control Study in Chinese Women. Front Endocrinol (Lausanne). 2020;10:905. doi: https://doi.org/10.3389/fendo.2019.00905
4. Lee J, Lee KS, Kim H, et al. The relationship between metabolic syndrome and the incidence of colorectal cancer. Environ Health Prev Med. 2020;25(1):6. doi: https://doi.org/10.1186/s12199-020-00845-w
5. Grgurevic I, Podrug K, Mikolasevic I, et al. Natural History of Nonalcoholic Fatty Liver Disease: Implications for Clinical Practice and an Individualized Approach. Can J Gastroenterol Hepatol. 2020;2020:1-10. doi: https://doi.org/10.1155/2020/9181368
6. Wang Y, Tu R, Yuan H, et al. Associations of unhealthy lifestyles with metabolic syndrome in Chinese rural aged females. Sci Rep. 2020;10(1):2718. doi: https://doi.org/10.1038/s41598-020-59607-x
7. Lee M-K, Han K, Kim MK, et al. Changes in metabolic syndrome and its components and the risk of type 2 diabetes: a nationwide cohort study. Sci Rep. 2020;10(1):2313. doi: https://doi.org/10.1038/s41598-020-59203-z
8. Lee M-K, Han K, Kim MK, et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med. 2017;377(1):13-27. doi: https://doi.org/10.1056/NEJMoa1614362
9. Brandão AD, da Silva JH, Mariane Oliveira Lima S, et al. Short and long term effect of treatment non-pharmacological and lifestyle in patients with metabolic syndrome. Diabetol Metab Syndr. 2020;12(1):16. doi: https://doi.org/10.1186/s13098-020-0522-y
10. Bloomgarden ZT. Symposium: Debating the Metabolic Syndrome. Medscape Conference Coverage, based on selected sessions. American Diabetes Association 66th Scientific Sessions. Washington: DC; 2006; June 9-13.
11. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and Management of the Metabolic Syndrome. Circulation. 2005;112(17):35-52. doi: https://doi.org/10.1161/CIRCULATIONAHA.105.169405
12. Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40-50. doi: https://doi.org/10.1016/j.diabres.2017.03.024
13. Ranasinghe P, Mathangasinghe Y, Jayawardena R, et al. Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: a systematic review. BMC public. health. 2017;17:101. doi: https://doi.org/10.1186/s12889-017-4041-1
14. Antonjuk MV, Novgorodceva TP, Denisenko JuK, et al. Metabolicheskij sindrom. Aktual’nye voprosy diagnostiki, patogeneza i vosstanovitel’nogo lechenija: monografija. Vladivostok: Izd-vo Dal’nevost. federal. un-ta; 2018. 212 p. (In Russ.).
15. Alberti KGMM, Eckel RH, Grundy SM, et al. Harmonizing the Metabolic Syndrome. Circulation. 2009;120(16):1640-1645. doi: https://doi.org/10.1161/CIRCULATIONAHA.109.192644
16. Expert Panel on Detection, Evaluation and T of HBC in A. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA J Am Med Assoc. 2001;285(19):2486-2497. doi: https://doi.org/10.1001/jama.285.19.2486
17. Bloomgarden ZT. American Association of Clinical Endocrinologists (AACE) Consensus Conference on the Insulin Resistance Syndrome: 25-26 August 2002, Washington, DC. Diabetes Care. 2003;26(4):1297-1303. doi: https://doi.org/10.2337/diacare.26.4.1297
18. Wu LT, Shen YF, Hu L, et al. Prevalence and associated factors of metabolic syndrome in adults: a population-based epidemiological survey in Jiangxi province, China. BMC Public Health. 2020;20(1):133. doi: https://doi.org/10.1186/s12889-020-8207-x
19. Moore JX, Chaudhary N, Akinyemiju T. Metabolic Syndrome Prevalence by Race/Ethnicity and Sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev Chronic Dis. 2017;14:160287. doi: https://doi.org/10.5888/pcd14.160287
20. Ferguson-Smith AC, Patti ME. You are what your dad ate. Cell Metab. 2011;13(2):115-117. doi: https://doi.org/10.1016/j.cmet.2011.01.011
21. Hardy DS, Garvin JT, Mersha TB, Racette SB. Ancestry specific associations of FTO gene variant and metabolic syndrome. Medicine (Baltimore). 2020;99(6):e18820. doi: https://doi.org/10.1097/MD.0000000000018820
22. Lee H-S, Kim Y, Park T. New Common and Rare Variants Influencing Metabolic Syndrome and Its Individual Components in a Korean Population. Sci Rep. 2018;8(1):5701. doi: https://doi.org/10.1038/s41598-018-23074-2
23. Musani SK, Martin LJ, Woo JG, et al. Heritability of the Severity of the Metabolic Syndrome in Whites and Blacks in 3 Large Cohorts. Circ Cardiovasc Genet. 2017;10(2). doi: https://doi.org/10.1161/CIRCGENETICS.116.001621
24. Sigit FS, Tahapary DL, Trompet S, et al. The prevalence of metabolic syndrome and its association with body fat distribution in middle-aged individuals from Indonesia and the Netherlands: a cross-sectional analysis of two population-based studies. Diabetol Metab Syndr. 2020;12(1):2. doi: https://doi.org/10.1186/s13098-019-0503-1
25. Palaniappan LP, Wong EC, Shin JJ. et al. Asian Americans have greater prevalence of metabolic syndrome despite lower body mass index. In J Obe. 2017;35:393-400. doi: https://doi.org/10.1038/ijo.2010.152.
26. Huang X, Hu Y, Du L, et al. Metabolic syndrome in native populations living at high altitude: a cross-sectional survey in Derong, China. BMJ Open. 2020;10(1):e032840. doi: https://doi.org/10.1136/bmjopen-2019-032840
27. Ivanova N, Liu Q, Agca C, et al. White matter inflammation and cognitive function in a co-morbid metabolic syndrome and prodromal Alzheimer’s disease rat model. J Neuroinflammation. 2020;17(1):29. doi: https://doi.org/10.1186/s12974-020-1698-7
28. Nolan PB, Carrick-Ranson G, Stinear JW. et al. Prevalence of metabolic syndrome and metabolic syndrome components in young adults: A pooled analysis. Prev. Med. Rep. 2017;7:211-215. doi: https://doi.org/10.1016/j.pmedr.2017.07.004
29. Mozaffarian D, Benjamin EJ, Go AS. et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation. 2015;131:e29-322. doi: https://doi.org/10.1161/CIR.0000000000000152.
30. Liu J-H, Qian Y-X, Ma Q-H, et al. Depressive symptoms and metabolic syndrome components among older Chinese adults. Diabetol Metab Syndr. 2020;12(1):18. doi: https://doi.org/10.1186/s13098-020-00526-2
31. Fan L, Hao Z, Gao L, et al. Non-linear relationship between sleep duration and metabolic syndrome. Medicine (Baltimore). 2020;99(2):e18753. doi: https://doi.org/10.1097/MD.0000000000018753
32. Selvi Y, Kandeger A, Boysan M. et al. The effects of individual biological rhythm differences on sleep quality, daytime sleepiness, and dissociative experiences. Psychiatry Res. 2017;256:243-248. doi: https://doi.org/10.1016/j.psychres.2017.06.059
33. 1. Liao C-C, Sheu WH-H, Lin S-Y, et al. The Relationship Between Abdominal Body Composition and Metabolic Syndrome After a Weight Reduction Program in Adult Men with Obesity. Diabetes, Metab Syndr Obes Targets Ther. 2020;13:1-8. doi: https://doi.org/10.2147/DMSO.S228954
34. Goh VHH, Hart WG. Excess fat in the abdomen but not general obesity is associated with poorer metabolic and cardiovascular health in premenopausal and postmenopausal Asian women. Maturitas. 2018;107:33-38. doi: https://doi.org/10.1016/j.maturitas.2017.10.002
35. Ladeiras-Lopes R, Sampaio F, Bettencourt N., et al. The ratio between visceral and subcutaneous abdominal fat assessed by computed tomography is an independent predictor of mortality and cardiac events. Rev Esp Cardiol (Engl Ed). 2017;70(5):331-337. doi: https://doi.org/10.1016/j.recesp.2016.09.006
36. Filatova GA, Djepjui TI, Grishina TI. Ozhirenie: spornye voprosy, opredeljajushhie metabolicheskoe zdorov’e. Jendokrinologija: novosti, mnenija, obuchenie. 2018;7(1):58-67. (In Russ.).
37. van Vliet-Ostaptchouk JV, Nuotio M-L, Slagter SN, et al. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large cohort studies. BMC Endocr Disord. 2014;14(1):9. doi: https://doi.org/10.1186/1472-6823-14-9
38. Phillips CM. Metabolically healthy obesity across the life course: epidemiology determinants, and implications. Ann N Y Acad Sci. 2017;1391(1):85-100. doi: https://doi.org/1111/nyas.13230
39. Brown RE, Kuk JL. Consequences of obesity and weight loss: a devil’s advocate position. Obes. Rev. 2015;16(1):77-87. doi: https://doi.org/10.1111/obr.12232
40. Eckel N, Meidtner K, Kalle-Uhlmann T, et al. Metabolically healthy obesity and cardiovascular events: a systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2016;23(9):956-966. doi: https://doi.org/10.1177/2047487315623884
41. Chen TP, Lin WY, Chiang CH, et al. Metabolically healthy obesity and risk of non-alcoholic fatty liver disease severity independent of visceral fat. J Gastroenterol Hepatol. 2021. doi: 10.1111/jgh.15544.
42. Kytikova OY, Antonyuk MV, Gvozdenko TA, Novgorodtseva TР. Metabolic aspects of the relationship of asthma and obesity. Obesity and Metabolism. 2019;15(4):9-14. doi: https://doi.org/10.14341/omet9578
43. Novgorodtseva TP, Karaman YK, Zhukova NV, et al. Composition of fatty acids in plasma and erythrocytes and eicosanoids level in patients with metabolic syndrome. Lipids Health Dis. 2011;10(1):82. doi: https://doi.org/10.1186/1476-511X-10-82
44. Niu H, Zhang H, Peng J, et al. Quantitative endogenous peptidomics analysis of the type-2 diabetic clinical serum samples. Chinese J Chromatogr. 2019;37(8):853. doi: https://doi.org/10.3724/SP.J.1123.2019.03012
45. Chen D, Zhao X, Sui Z, et al. A multi-omics investigation of the molecular characteristics and classification of six metabolic syndrome relevant diseases. Theranostics. 2020;10(5):2029-2046. doi: https://doi.org/10.7150/thno.41106
46. Surowiec I, Noordam R, Bennett K, et al. Metabolomic and lipidomic assessment of the metabolic syndrome in Dutch middle-aged individuals reveals novel biological signatures separating health and disease. Metabolomics. 2019;15(2):23. doi: https://doi.org/10.1007/s11306-019-1484-7
47. Liggi S, Griffin JL. Metabolomics applied to diabetes-lessons from human population studies. Int. J. Biochem. Cell Biol. 2017;93:136-147. doi: https://doi.org/10.1016/j.biocel.2017.10.011
48. Gao X, Tian Y, Randell E, et al. Unfavorable Associations Between Serum Trimethylamine N-Oxide and L-Carnitine Levels With Components of Metabolic Syndrome in the Newfoundland Population. Front Endocrinol (Lausanne). 2019;10. doi: https://doi.org/10.3389/fendo.2019.00168
49. Barrea L, Annunziata G, Muscogiuri G, et al. Trimethylamine-N-oxide (TMAO) as Novel Potential Biomarker of Early Predictors of Metabolic Syndrome. Nutrients. 2018;10(12):1971. doi: https://doi.org/10.3390/nu10121971
50. Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23(1):107-113. doi: https://doi.org/10.1038/nm.4236
51. Zeng S-L, Li S-Z, Xiao P-T, et al. Citrus polymethoxyflavones attenuate metabolic syndrome by regulating gut microbiome and amino acid metabolism. Sci Adv. 2020;6(1):6208. doi: https://doi.org/10.1126/sciadv.aax6208
52. Ouchi S, Shimada K, Miyazaki T, et al. Low 1,5-anhydroglucitol levels are associated with long-term cardiac mortality in acute coronary syndrome patients with hemoglobin A1c levels less than 7.0%. Cardiovasc Diabetol. 2017;16(1):151. doi: https://doi.org/10.1186/s12933-017-0636-1
53. Zhenyukh O, Civantos E, Ruiz-Ortega M, et al. High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation. Free Radic Biol Med. 2017;104:165-177. doi: https://doi.org/10.1016/j.freeradbiomed.2017.01.009
54. Aichler M, Borgmann D, Krumsiek J, et al. N-acyl Taurines and Acylcarnitines Cause an Imbalance in Insulin Synthesis and Secretion Provoking β Cell Dysfunction in Type 2 Diabetes. Cell Metab. 2017;25(6):1334-1347. doi: https://doi.org/10.1016/j.cmet.2017.04.012
55. Ramakrishanan N, Denna T, Devaraj S, et al. Exploratory lipidomics in patients with nascent Metabolic Syndrome. J Diabetes Complications. 2018;32(8):791-794. doi: https://doi.org/10.1016/j.jdiacomp.2018.05.014
56. Shim K, Gulhar R, Jialal I. Exploratory metabolomics of nascent metabolic syndrome. J Diabetes Complications. 2019;33(3):212-216. doi: https://doi.org/10.1016/j.jdiacomp.2018.12.002
57. Grandl G, Wolfrum C. Hemostasis, endothelial stress, inflammation, and the metabolic syndrome. Semin Immunopathol. 2018;40(2):215-224. doi: https://doi.org/10.1007/s00281-017-0666-5
58. Han MS, White A, Perry RJ, et al. Regulation of adipose tissue inflammation by interleukin 6. Proc Natl Acad Sci. 2020;117(6):2751-2760. doi: https://doi.org/10.1073/pnas.1920004117
59. Mouton AJ, Li X, Hall ME, et al. Obesity, Hypertension, and Cardiac Dysfunction: Novel Roles of Immunometabolism in Macrophage Activation and Inflammation. Circ Res. 2020;126(6):789-806. doi: https://doi.org/10.1161/CIRCRESAHA.119.312321
60. Dini L, Tacconi S, Carata E, et al. Microvesicles and exosomes in metabolic diseases and inflammation. Cytokine Growth Factor Rev. 2020;51:27-39. doi: https://doi.org/10.1016/j.cytogfr.2019.12.008
61. Jing Y, Wu F, Li D, et al. Metformin improves obesity-associated inflammation by altering macrophages polarization. Mol Cell Endocrinol. 2018;461:256-264. doi: https://doi.org/10.1016/j.mce.2017.09.025
62. Khodamoradi K, Parmar M, Khosravizadeh Z, et al. The role of leptin and obesity on male infertility. Curr Opin Urol. 2020;30(3):334-339. doi: https://doi.org/10.1097/MOU.0000000000000762
63. Shiba CK, Dâmaso AR, Rhein SO, et al. Interdisciplinary therapy had positive effects on inflammatory state, mediated by leptin, adiponectin, and quality of diet in obese women. Nutr Hosp. 2020. doi: https://doi.org/10.20960/nh.02777
64. Benrick A, Chanclón B, Micallef P, et al. Adiponectin protects against development of metabolic disturbances in a PCOS mouse model. Proc Natl Acad Sci. 2017;114(34):E7187-E7196. doi: https://doi.org/10.1073/pnas.1708854114
65. Lei L, Li K, Li L, et al. Circulating zinc-α2-glycoprotein levels are low in newly diagnosed patients with metabolic syndrome and correlate with adiponectin. Nutr Metab (Lond). 2017;14(1):53. doi: https://doi.org/10.1186/s12986-017-0210-6
66. Urbschat A, Thiemens A-K, Mertens C, et al. Macrophage-Secreted Lipocalin-2 Promotes Regeneration of Injured Primary Murine Renal Tubular Epithelial Cells. Int J Mol Sci. 2020;21(6):2038. doi: https://doi.org/10.3390/ijms21062038
67. Currò D, Vergani E, Bruno C, et al. Plasmatic lipocalin‐2 levels in chronic low‐grade inflammation syndromes: Comparison between metabolic syndrome, total and partial adult growth hormone deficiency. BioFactors. 2020;46(4):629-636. doi: https://doi.org/10.1002/biof.1628
68. Mosialou I, Shikhel S, Liu J-M, et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature. 2017;543(7645):385-390. doi: https://doi.org/10.1038/nature21697
69. Nie X, Ma X, Xu Y, et al. Characteristics of Serum Thyroid Hormones in Different Metabolic Phenotypes of Obesity. Front Endocrinol (Lausanne). 2020;11:68. doi: https://doi.org/10.3389/fendo.2020.00068
70. Amouzegar A, Kazemian E, Abdi H, et al. Association Between Thyroid Function and Development of Different Obesity Phenotypes in Euthyroid Adults: A Nine-Year Follow-Up. Thyroid. 2018;28(4):458-464. doi: https://doi.org/10.1089/thy.2017.0454
71. Miao Y, Warner M, Gustafsson J-Å. Liver X receptor β: new player in the regulatory network of thyroid hormone and ‘browning’ of white fat. Adipocyte. 2016;5(2):238-242. doi: https://doi.org/10.1080/21623945.2016.1142634
72. Kopec AK, Abrahams SR, Thornton S, et al. Thrombin promotes diet-induced obesity through fibrin-driven inflammation. J Clin Invest. 2017;127(8):3152-3166. doi: https://doi.org/10.1172/JCI92744
73. Villa CR, Chen J, Wen B, et al. Maternal vitamin D beneficially programs metabolic, gut and bone health of mouse male offspring in an obesogenic environment. In J obes. 2016;40(12):1875-1883. doi: 10.1038/ijo.2016.177.
74. Cox RL. Rationally designed PPARdelta-specific agonists and therapeutic potential for metabolic syndrome. Proc Natl Acad Sci USA. 2017;114:3284-3285. doi: https://doi.org/10.1073/pnas.1702084114.
75. Alicka M, Marycz K. The Effect of Chronic Inflammation and Oxidative and Endoplasmic Reticulum Stress in the Course of Metabolic Syndrome and Its Therapy. Stem Cells Int. 2018;2018:1-13. doi: https://doi.org/10.1155/2018/4274361
76. Shan B, Wang X, Wu Y, et al. The metabolic ER stress sensor IRE1alpha suppresses alternative activation of macrophages and impairs energy expenditure in obesity. Nat immunology. 2017;18(5):519-529. doi: https://doi.org/10.1038/ni.3709
77. Monnerie S, Comte B, Ziegler D, et al. Metabolomic and Lipidomic Signatures of Metabolic Syndrome and its Physiological Components in Adults: A Systematic Review. Sci Rep. 2020;10(1):669. doi: https://doi.org/10.1038/s41598-019-56909-7
78. Dumas M, Kinross J, Nicholson JK. Metabolic Phenotyping and Systems Biology Approaches to Understanding Metabolic Syndrome and Fatty Liver Disease. Gastroenterology. 2014;146(1):46-62. doi: https://doi.org/10.1053/j.gastro.2013.11.001
Supplementary files
Review
For citations:
Kytikova O.Y., Antonyuk M.V., Kantur T.A., Novgorodtseva T.P., Denisenko Y.K. Prevalence and biomarkers in metabolic syndrome. Obesity and metabolism. 2021;18(3):302-312. (In Russ.) https://doi.org/10.14341/omet12704

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).