Toll-like receptors in the pathophysiology of obesity
https://doi.org/10.14341/omet10336
Abstract
Obesity is a complex and relevant global medical and social problem. The adipose tissue is not only a place of deposition of energy substrates but also a source of secretion of pro-inflammatory and anti-inflammatory mediators involved in the development of the chronic latent systemic inflammatory process in the organism with obesity. The metabolic signal in obesity contributes to the polarization of macrophages in the M1 direction and triggers the Th1 immune response, causing the development of adipose tissue inflammation. A chronic inflammatory condition plays a key role in the pathophysiology of obesity-induced insulin resistance. Toll-like receptors (TLRs) may be a possible pathophysiological link in the development of insulin resistance in inflammation. At the same time, inflammation-induced lipolysis is necessary for the release of energy resources during the development of the infectious process. Thus, low-grade inflammation is important to protect against adipocyte dysfunction. These results suggest that pro-inflammatory signaling is not exclusively pathogenic in obesity. In this regard, the study of inflammatory signaling pathways involved in the modulation of chronic inflammation of adipose tissue is particularly relevant. This review summarizes current views on the structure, function of TLRs and their involvement in the pathogenesis of chronic inflammation in obesity. The possibility of using TLRs as a therapeutic target in this pathology is discussed. Obviously, further study of inflammatory signaling pathways involving TLRs initiating the development of chronic inflammation of adipose tissue will allow the development of new and effective therapeutic strategies for obesity and its metabolic complications.
About the Authors
Oxana Yu. KytikovaRussian Federation
MD, PhD
Tatyana Р. Novgorodtseva
Russian Federation
MD, PhD, Professor
Yuliya К. Denisenko
Russian Federation
MD, PhD
Marina V. Antonyuk
Russian Federation
MD, PhD, Professor
Tatyana A. Gvozdenko
Russian Federation
MD, PhD, Professor
References
1. Moore JB, Boesch C. Getting energy balance right in an obesogenic world. Proc Nutr Soc. 2019;78(3):259-261. DOI:10.1017/S0029665118002720
2. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet. 2016;387(10026):1377-1396. DOI:10.1016/s0140-6736(16)30054-x
3. Ожирение в России: статистические данные. 2013. [Ozhirenie v Rossii: statisticheskie dannye. 2013. (In Russ.)]
4. Bhupathiraju SN, Hu FB. Epidemiology of Obesity and Diabetes and Their Cardiovascular Complications. Circ Res. 2016;118(11):1723-1735. DOI:10.1161/CIRCRESAHA.115.306825
5. Кытикова О.Ю., Антонюк М.В., Гвозденко Т.А., Новгородцева Т.П. Метаболические аспекты взаимосвязи ожирения и бронхиальной астмы. // Ожирение и метаболизм. — 2018. — Т. 15. — №4. — С. 9-14. [Kytikova OY, Antonyuk MV, Gvozdenko TA, Novgorodtseva TP. Metabolic aspects of the relationship of asthma and obesity. Obesity and metabolism. 2018;15(4):9-14. (In Russ.)] DOI:10.14341/OMET9578
6. Collaborators GBDEMRO. Burden of obesity in the Eastern Mediterranean Region: findings from the Global Burden of Disease 2015 study. Int J Public Health. 2018;63(Suppl 1):165-176. DOI:10.1007/s00038-017-1002-5
7. DeBoer MD. Assessing and Managing the Metabolic Syndrome in Children and Adolescents. Nutrients. 2019;11(8). DOI:10.3390/nu11081788
8. Kumari R, Kumar S, Kant R. An update on metabolic syndrome: Metabolic risk markers and adipokines in the development of metabolic syndrome. Diabetes Metab Syndr. 2019;13(4):2409-2417. DOI:10.1016/j.dsx.2019.06.005
9. Gruss SM, Nhim K, Gregg E, et al. Public Health Approaches to Type 2 Diabetes Prevention: the US National Diabetes Prevention Program and Beyond. Curr Diab Rep. 2019;19(9):78. DOI:10.1007/s11892-019-1200-z
10. Zhukova NV, Novgorodtseva TP, Denisenko YK. Effect of the prolonged high-fat diet on the fatty acid metabolism in rat blood and liver. Lipids Health Dis. 2014;13:49. DOI:10.1186/1476-511X-13-49
11. Huh JY, Park YJ, Ham M, Kim JB. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol Cells. 2014;37(5):365-371. DOI:10.14348/molcells.2014.0074
12. Revelo XS, Tsai S, Lei H, et al. Perforin is a novel immune regulator of obesity-related insulin resistance. Diabetes. 2015;64(1):90-103. DOI:10.2337/db13-1524
13. Thomas D, Apovian C. Macrophage functions in lean and obese adipose tissue. Metabolism. 2017;72:120-143. DOI:10.1016/j.metabol.2017.04.005
14. Subramanian S, Pallati PK, Sharma P, et al. Significant association of TREM-1 with HMGB1, TLRs and RAGE in the pathogenesis of insulin resistance in obese diabetic populations. Am J Transl Res. 2017;9(7):3224-3244.
15. Wong SK, Chin KY, Ima-Nirwana S. Toll-like Receptor as a Molecular Link between Metabolic Syndrome and Inflammation: A Review. Curr Drug Targets. 2019;20(12):1264-1280. DOI:10.2174/1389450120666190405172524.
16. Liu YC, Zou XB, Chai YF, Yao YM. Macrophage polarization in inflammatory diseases. Int J Biol Sci. 2014;10(5):520-529. DOI:10.7150/ijbs.8879.
17. Follow-up to the Political Declaration of the High-level Meeting of the General Assembly on the Prevention and Control of Non-Communicable Diseases. Geneva: World Health Assembly; 2013.
18. Boutens L, Mirea AM, van den Munckhof I, et al. A role for TLR10 in obesity and adipose tissue morphology. Cytokine. 2018;108:205-212. DOI:10.1016/j.cyto.2018.03.021
19. Sigrist-Flores SC, Ponciano-Gomez A, Pedroza-Gonzalez A, et al. Chronic intake of moderate fat-enriched diet induces fatty liver and low-grade inflammation without obesity in rabbits. Chem Biol Interact. 2019;300:56-62. DOI:10.1016/j.cbi.2019.01.004
20. Kane H, Lynch L. Innate Immune Control of Adipose Tissue Homeostasis. Trends Immunol. 2019;40(9):857-872. DOI:10.1016/j.it.2019.07.006
21. Lin TY, Chiu CJ, Kuan CH. et Lin TY, Chiu CJ, Kuan CH, et al. IL-29 promoted obesity-induced inflammation and insulin resistance. Cell Mol Immunol. 2020;17(4):369-379. DOI:10.1038/s41423-019-0262-9
22. Krejsek J. Defensive and damaging inflammation: basic characteristics. Vnitr Lek. 2019;65(2):76-80.
23. Zielen S, Trischler J, Schubert R. Lipopolysaccharide challenge: immunological effects and safety in humans. Expert Rev Clin Immunol. 2015;11(3):409-418. DOI:10.1586/1744666X.2015.1012158
24. Stanley TL, Zanni MV, Johnsen S, et al. TNF-alpha antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J Clin Endocrinol Metab. 2011;96(1):E146-150. DOI:10.1210/jc.2010-1170
25. Anto Michel N, Colberg C, Buscher K, et al. Inflammatory Pathways Regulated by Tumor Necrosis Receptor-Associated Factor 1 Protect From Metabolic Consequences in Diet-Induced Obesity. Circ Res. 2018;122(5):693-700. DOI:10.1161/CIRCRESAHA.117.312055
26. Missiou A, Kostlin N, Varo N, et al. TRAF1 Deficiency Attenuates Atherosclerosis in Mice by Impairing Monocyte Recruitment to the Vessel Wall. Circulation. 2010;121(18):2033-2044. DOI:10.1161/CIRCULATIONAHA.109.895037
27. Wernstedt Asterholm I, Tao C, Morley TS, et al. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab. 2014;20(1):103-118. DOI:10.1016/j.cmet.2014.05.005
28. Wang X, Zhang Y, Zhang R, Zhang J. The diversity of pattern recognition receptors (PRRs) involved with insect defense against pathogens. Curr Opin Insect Sci. 2019;33:105-110. DOI:10.1016/j.cois.2019.05.004
29. Zakeri A, Russo M. Dual Role of Toll-like Receptors in Human and Experimental Asthma Models. Front Immunol. 2018;9:1027. DOI:10.3389/fimmu.2018.01027
30. De Nardo D. Toll-like receptors: Activation, signalling and transcriptional modulation. Cytokine. 2015;74(2):181-189. DOI:10.1016/j.cyto.2015.02.025
31. Schaefer L. Complexity of danger: the diverse nature of damage-associated molecular patterns. J Biol Chem. 2014;289(51):35237-35245. DOI:10.1074/jbc.R114.619304
32. Ashour DS. Toll-like receptor signaling in parasitic infections. Expert Rev Clin Immunol. 2015;11(6):771-780. DOI:10.1586/1744666X.2015.1037286
33. Lee BL, Barton GM. Trafficking of endosomal Toll-like receptors. Trends Cell Biol. 2014;24(6):360-369. DOI:10.1016/j.tcb.2013.12.002
34. Mirotti L, Alberca Custodio RW, Gomes E, et al. CpG-ODN Shapes Alum Adjuvant Activity Signaling via MyD88 and IL-10. Front Immunol. 2017;8:47. DOI:10.3389/fimmu.2017.00047
35. Akhter N, Madhoun A, Arefanian H, et al. Oxidative Stress Induces Expression of the Toll-Like Receptors (TLRs) 2 and 4 in the Human Peripheral Blood Mononuclear Cells: Implications for Metabolic Inflammation. Cell Physiol Biochem. 2019;53(1):1-18. DOI:10.33594/000000117
36. Andrews M, Soto N, Arredondo-Olguin M. Association between ferritin and hepcidin levels and inflammatory status in patients with type 2 diabetes mellitus and obesity. Nutrition. 2015;31(1):51-57. DOI:10.1016/j.nut.2014.04.019
37. Gong T, Yang Y, Jin T, et al. Orchestration of NLRP3 Inflammasome Activation by Ion Fluxes. Trends Immunol. 2018;39(5):393-406. DOI:10.1016/j.it.2018.01.009
38. Koppenol-Raab M, Sjoelund V, Manes NP, et al. Proteome and Secretome Analysis Reveals Differential Post-transcriptional Regulation of Toll-like Receptor Responses. Mol Cell Proteomics. 2017;16(4 suppl 1):S172-S186. DOI:10.1074/mcp.M116.064261
39. Hussey SE, Liang H, Costford SR, et al. TAK-242, a small-molecule inhibitor of Toll-like receptor 4 signalling, unveils similarities and differences in lipopolysaccharide- and lipid-induced inflammation and insulin resistance in muscle cells. Biosci Rep. 2013;33(1):37-47. DOI:10.1042/BSR20120098
40. Ieronymaki E, Daskalaki MG, Lyroni K, Tsatsanis C. Insulin Signaling and Insulin Resistance Facilitate Trained Immunity in Macrophages Through Metabolic and Epigenetic Changes. Front Immunol. 2019;10:1330. DOI:10.3389/fimmu.2019.01330
41. Reyna SM, Tantiwong P, Cersosimo E, et al. Short-term exercise training improves insulin sensitivity but does not inhibit inflammatory pathways in immune cells from insulin-resistant subjects. J Diabetes Res. 2013;2013:107805. DOI:10.1155/2013/107805
42. Liang H, Lum H, Alvarez A, et al. A low dose lipid infusion is sufficient to induce insulin resistance and a pro-inflammatory response in human subjects. PLoS One. 2018;13(4):e0195810. DOI:10.1371/journal.pone.0195810
43. de Mello VD, Kolehmainen M, Pulkkinen L, et al. Downregulation of genes involved in NFkappaB activation in peripheral blood mononuclear cells after weight loss is associated with the improvement of insulin sensitivity in individuals with the metabolic syndrome: the GENOBIN study. Diabetologia. 2008;51(11):2060-2067. DOI:10.1007/s00125-008-1132-7
44. Zhang J, Diao B, Lin X, et al. TLR2 and TLR4 mediate an activation of adipose tissue renin-angiotensin system induced by uric acid. Biochimie. 2019;162:125-133. DOI:10.1016/j.biochi.2019.04.013
45. Wang C, Ha X, Li W, et al. Correlation of TLR4 and KLF7 in Inflammation Induced by Obesity. Inflammation. 2017;40(1):42-51. DOI:10.1007/s10753-016-0450-z
46. Eisenbarth SC, Piggott DA, Huleatt JW, et al. Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med. 2002;196(12):1645-1651. DOI:10.1084/jem.20021340
47. Bahadur T, Chaudhry R, Bamola VD, et al. Toll like receptors (TLRs) in response to human gut microbiota of Indian obese and lean individuals. J Family Med Prim Care. 2019;8(5):1567-1570. DOI:10.4103/jfmpc.jfmpc_136_19
48. Miura K, Ishioka M, Iijima K. The Roles of the Gut Microbiota and Toll-like Receptors in Obesity and Nonalcoholic Fatty Liver Disease. J Obes Metab Syndr. 2017;26(2):86-96. DOI:10.7570/jomes.2017.26.2.86
49. Thomalla M, Schmid A, Neumann E, et al. Evidence of an anti-inflammatory toll-like receptor 9 (TLR 9) pathway in adipocytes. J Endocrinol. 2019;240(2):325-343. DOI:10.1530/JOE-18-0326
50. Kierdorf K, Fritz G. RAGE regulation and signaling in inflammation and beyond. J Leukoc Biol. 2013;94(1):55-68. DOI:10.1189/jlb.1012519
51. Song F, Hurtado del Pozo C, Rosario R, et al. RAGE regulates the metabolic and inflammatory response to high-fat feeding in mice. Diabetes. 2014;63(6):1948-1965. DOI:10.2337/db13-1636
52. Paudel YN, Angelopoulou E, Piperi C, et al. Enlightening the role of high mobility group box 1 (HMGB1) in inflammation: Updates on receptor signalling. Eur J Pharmacol. 2019;858:172487. DOI:10.1016/j.ejphar.2019.172487
53. Brencicova E, Diebold SS. Nucleic acids and endosomal pattern recognition: how to tell friend from foe? Front Cell Infect Microbiol. 2013;3:37. DOI:10.3389/fcimb.2013.00037
54. Zhang J, Zhang L, Zhang S, et al. HMGB1, an innate alarmin, plays a critical role in chronic inflammation of adipose tissue in obesity. Mol Cell Endocrinol. 2017;454:103-111. DOI:10.1016/j.mce.2017.06.012
55. Tadié J-M, Bae H-B, Banerjee S, et al. Differential activation of RAGE by HMGB1 modulates neutrophil-associated NADPH oxidase activity and bacterial killing. Am J Physiol Cell Physiol. 2012;302(1):C249-C256. DOI:10.1152/ajpcell.00302.2011
56. Jiang H, Duan J, Xu K, Zhang W. Resveratrol protects against asthma-induced airway inflammation and remodeling by inhibiting the HMGB1/TLR4/NF-κB pathway. Exp Ther Med. 2019. DOI:10.3892/etm.2019.7594
57. Szczepanski MJ, Luczak M, Olszewska E, et al. Molecular signaling of the HMGB1/RAGE axis contributes to cholesteatoma pathogenesis. J Mol Med. 2014;93(3):305-314. DOI:10.1007/s00109-014-1217-3
Supplementary files
|
1. Figure 1. Participation of toll-like receptors (TLRs) in the signaling mechanisms of inflammation in adipose tissue and insulin resistance | |
Subject | ||
Type | Other | |
View
(365KB)
|
Indexing metadata ▾ |
Review
For citations:
Kytikova O.Yu., Novgorodtseva T.Р., Denisenko Yu.К., Antonyuk M.V., Gvozdenko T.A. Toll-like receptors in the pathophysiology of obesity. Obesity and metabolism. 2020;17(1):56-63. (In Russ.) https://doi.org/10.14341/omet10336

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).