Associations of sex hormones with components of insulin-glucose homeostasis
Abstract
In this literature review, an attempt is made to analyze the interrelationships of the main sex hormones with the processes of development and progression of insulin resistance as a fundamental pathogenetic component of insulin-glucose homeostasis. In the evaluation of sex steroids, a complex approach was used - the associations of both androgens and estrogens in males and females are described in detail, a great deal of attention is paid to the violation of the secretion and effectiveness of the main adipocytokines - leptin and adiponectin in the sex hormone-insulin-glucose interaction chain. At the end of the review, new data on the expression of sodium-dependent glucose cotransporter (SGLT) and glucose transporters (GLUT) in animals, depending on sex, are presented.
About the Authors
Oksana V. TsygankovaNovosibirsk State Medical University; Research Institute of therapy and preventive medicine" branch of Federal Research Institute of a Cytology and Genetics
Russian Federation
ScD, associate professor
Artur R. Badin
Novosibirsk State Medical University
Russian Federation
resident
Zoya G. Bondareva
Novosibirsk State Medical University
Russian Federation
ScD, professor
Natalya G. Lozhkina
Novosibirsk State Medical University
Russian Federation
ScD, associate professor
Dmitrii Y. Platonov
Tver State Medical University
Russian Federation
ScD, professor
References
1. Цыганкова О.В. Этиопатогенетические особенности ишемической болезни сердца в зависимости от уровня половых гормонов, пола и возраста: Дис. … док. мед. наук. – Новосибирск; 2016. [Tsygankova OV. Etiopatogeneticheskie osobennosti ishemicheskoi bolezni serdtsa v zavisimosti ot urovnya polovykh gormonov, pola i vozrasta. [dissertation] Novosibirsk; 2016. (In Russ).] Доступно по: http://rsmu.ru/fileadmin/rsmu/img/about_rsmu/disser/8/d_cygankova_ov.pdf. Ссылка активна на 09.04.2017.
2. Liu D, Iruthayanathan M, Homan LL, et al. Dehydroepiandrosterone Stimulates Endothelial Proliferation and Angiogenesis through Extracellular Signal-Regulated Kinase 1/2-Mediated Mechanisms. Endocrinology. 2008;149(3):889-898. doi: 10.1210/en.2007-1125.
3. Bekaert M, Van Nieuwenhove Y, Calders P, et al. Determinants of testosterone levels in human male obesity. Endocrine. 2015;50(1):202-211. doi: 10.1007/s12020-015-0563-4.
4. Haring R, Ittermann T, Völzke H, et al. Prevalence, incidence and risk factors of testosterone deficiency in a population-based cohort of men: results from the study of health in Pomerania. The Aging Male. 2010;13(4):247-257. doi: 10.3109/13685538.2010.487553.
5. Stellato RK, Feldman HA, Hamdy O, et al. Testosterone, sex hormone-binding globulin, and the development of type 2 diabetes in middle-aged men: prospective results from the Massachusetts male aging study. Diabetes Care. 2000;23(4):490-494. doi: 10.2337/diacare.23.4.490.
6. Høst C, Gormsen LC, Hougaard DM, et al. Acute and Short-term Chronic Testosterone Fluctuation Effects on Glucose Homeostasis, Insulin Sensitivity, and Adiponectin: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study. J. Clin. Endocr. Metab. 2014;99(6):E1088-E1096. doi: 10.1210/jc.2013-2807.
7. Grossmann M. Testosterone and glucose metabolism in men: current concepts and controversies. J. Endocrinol. 2013;220(3):R37-R55. doi: 10.1530/joe-13-0393.
8. Rao PM, Kelly DM, Jones TH. Testosterone and insulin resistance in the metabolic syndrome and T2DM in men. Nature Reviews Endocrinology. 2013;9(8):479-493. doi: 10.1038/nrendo.2013.122.
9. Simon D, Charles M-A, Nahoul K, et al. Association between Plasma Total Testosterone and Cardiovascular Risk Factors in Healthy Adult Men: The Telecom Study1. J. Clin. Endocr. Metab. 1997;82(2):682-685. doi: 10.1210/jcem.82.2.3766.
10. Zhang N, Zhang H, Zhang X, et al. The relationship between endogenous testosterone and lipid profile in middle-aged and elderly Chinese men. European journal of endocrinology / European Federation of Endocrine Societies. 2014;170(4):487-494. doi: 10.1530/eje-13-0802.
11. Dhindsa S, Ghanim H, Batra M, et al. Insulin Resistance and Inflammation in Hypogonadotropic Hypogonadism and Their Reduction After Testosterone Replacement in Men With Type 2 Diabetes. Diabetes Care. 2016;39(1):82-91. doi: 10.2337/dc15-1518.
12. Gianatti EJ, Dupuis P, Hoermann R, et al. Effect of Testosterone Treatment on Glucose Metabolism in Men With Type 2 Diabetes: A Randomized Controlled Trial. Diabetes Care. 2014;37(8):2098-2107. doi: 10.2337/dc13-2845.
13. Grossmann M, Hoermann R, Wittert G, Yeap BB. Effects of testosterone treatment on glucose metabolism and symptoms in men with type 2 diabetes and the metabolic syndrome: a systematic review and meta-analysis of randomized controlled clinical trials. Clin. Endocrinol. (Oxf.). 2015;83(3):344-351. doi: 10.1111/cen.12664.
14. Macut D, Antić IB, Bjekić-Macut J. Cardiovascular risk factors and events in women with androgen excess. J. Endocrinol. Invest. 2014;38(3):295-301. doi: 10.1007/s40618-014-0215-1.
15. Stuckey BGA, Opie N, Cussons AJ, et al. Clustering of metabolic and cardiovascular risk factors in the polycystic ovary syndrome: a principal component analysis. Metabolism. 2014;63(8):1071-1077. doi: 10.1016/j.metabol.2014.05.004.
16. Сметник В.П. Половые гормоны и жировая ткань // Ожирение и метаболизм. - 2007. - Т. 4. - №3. - C. 17-22. [Smetnik VP. Polovye gormony i zhirovaya tkan'. Obesity and metabolism. 2007;4(3):17-22. (In Russ).] doi: 10.14341/2071-8713-5017
17. Гамидов С.И., Иремашвили В.В. Метаболический синдром в урологии. М.: Издательство Инсайт Полиграфик; 2010. [Gamidov SI, Iremashvili VV. Metabolicheskii sindrom v urologii. Moscow: Insait Poligrafik; 2010. (In Russ).]
18. Barber TM, Dimitriadis GK, Andreou A, Franks S. Polycystic ovary syndrome: insight into pathogenesis and a common association with insulin resistance. Clin. Med. (Northfield Il.). 2016;16(3):262-266. doi: 10.7861/clinmedicine.16-3-262.
19. Inada A, Fujii NL, Inada O, et al. Effects of 17β-Estradiol and Androgen on Glucose Metabolism in Skeletal Muscle. Endocrinology. 2016;157(12):4691-4705. doi: 10.1210/en.2016-1261.
20. Moghetti P, Tosi F, Castello R, et al. The insulin resistance in women with hyperandrogenism is partially reversed by antiandrogen treatment: evidence that androgens impair insulin action in women. J. Clin. Endocr. Metab. 1996;81(3):952-960. doi: 10.1210/jcem.81.3.8772557.
21. Villarroel C, Salinas A, López P, et al. Pregestational type 2 diabetes and gestational diabetes exhibit different sexual steroid profiles during pregnancy. Gynecol. Endocrinol. 2016;33(3):212-217. doi: 10.1080/09513590.2016.1248933.
22. Valderhaug TG, Hertel JK, Nordstrand N, et al. The association between hyperandrogenemia and the metabolic syndrome in morbidly obese women. Diabetol. Metab. Syndr. 2015;7(1). doi: 10.1186/s13098-015-0040-5.
23. Jelenik T, Roden M. How Estrogens Prevent From Lipid-Induced Insulin Resistance. Endocrinology. 2013;154(3):989-992. doi: 10.1210/en.2013-1112.
24. Vogel H, Mirhashemi F, Liehl B, et al. Estrogen Deficiency Aggravates Insulin Resistance and Induces β-Cell Loss and Diabetes in Female New Zealand Obese Mice. Horm. Metab. Res. 2013;45(06):430-435. doi: 10.1055/s-0032-1331700.
25. Dehlendorff C, Andersen KK, Olsen TS. Sex Disparities in Stroke: Women Have More Severe Strokes but Better Survival Than Men. Journal of the American Heart Association. 2015;4(7):e001967. doi: 10.1161/jaha.115.001967.
26. Sciacqua A, Perticone M, Tassone EJ, et al. Uric acid is an independent predictor of cardiovascular events in post-menopausal women. Int. J. Cardiol. 2015;197:271-275. doi: 10.1016/j.ijcard.2015.06.069.
27. Smith GN. The Maternal Health Clinic: Improving women’s cardiovascular health. Semin. Perinatol. 2015;39(4):316-319. doi: 10.1053/j.semperi.2015.05.012.
28. Lizcano F, Guzmán G. Estrogen Deficiency and the Origin of Obesity during Menopause. BioMed Research International. 2014;2014:1-11. doi: 10.1155/2014/757461.
29. Brand JS, van der Schouw YT. Testosterone, SHBG and cardiovascular health in postmenopausal women. Int. J. Impot. Res. 2010;22(2):91-104. doi: 10.1038/ijir.2009.64.
30. Kim C, Cushman M, Kleindorfer D, et al. A Review of the Relationships between Endogenous Sex Steroids and Incident Ischemic Stroke and Coronary Heart Disease Events. Curr. Cardiol. Rev. 2015;11(999):1-1. doi: 10.2174/1573403x11666150107160016.
31. Лебедева А.Ю., Клыков Л.Л., Зайцева В.В. ИБС у молодых женщин: проблемы диагностики и профилактики // Российский кардиологический журнал. – 2011. – №6 – С. 90-97. [Lebedeva AY, Klykov LL, Zaitseva VV. Coronary heart disease in young women: problems of diagnostics and prevention. Russian Journal of Cardiology. 2011;(6):90-97. (In Russ.)] doi: 10.15829/1560-4071-2011-6-90-97
32. Maniu A, Aberdeen GW, Lynch TJ, et al. Estrogen deprivation in primate pregnancy leads to insulin resistance in offspring. J. Endocrinol. 2016;230(2):171-183. doi: 10.1530/joe-15-0530.
33. Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Effects of estrogen in preventing neuronal insulin resistance in hippocampus of obese rats are different between genders. Life Sci. 2011;89(19-20):702-707. doi: 10.1016/j.lfs.2011.08.011.
34. Moran A, Jacobs DR, Steinberger J, et al. Changes in Insulin Resistance and Cardiovascular Risk During Adolescence: Establishment of Differential Risk in Males and Females. Circulation. 2008;117(18):2361-2368. doi: 10.1161/circulationaha.107.704569.
35. Antonio L, Wu FCW, O'Neill TW, et al. Associations Between Sex Steroids and the Development of Metabolic Syndrome: A Longitudinal Study in European Men. J. Clin. Endocr. Metab. 2015;100(4):1396-1404. doi: 10.1210/jc.2014-4184.
36. Tőke J, Czirják G, Bezzegh A, et al. Effects and significance of estradiol in men. Orv. Hetil. 2014;155(23):891-896. doi: 10.1556/oh.2014.29914.
37. Williams G. Aromatase up-regulation, insulin and raised intracellular oestrogens in men, induce adiposity, metabolic syndrome and prostate disease, via aberrant ER-α and GPER signalling. Mol. Cell. Endocrinol. 2012;351(2):269-278. doi: 10.1016/j.mce.2011.12.017.
38. McDermott MT. Endocrine secrets. 6th ed. Philadelphia: Saunders; 2013.
39. Michalakis K, Mintziori G, Kaprara A, et al. The complex interaction between obesity, metabolic syndrome and reproductive axis: A narrative review. Metabolism. 2013;62(4):457-478. doi: 10.1016/j.metabol.2012.08.012.
40. Coppari R, Bjørbæk C. Leptin revisited: its mechanism of action and potential for treating diabetes. Nature Reviews Drug Discovery. 2012;11(9):692-708. doi: 10.1038/nrd3757.
41. Hausman GJ, Barb CR. Adipose Tissue and the Reproductive Axis: Biological Aspects. Endocrine development. 2010;19:31-44. doi: 10.1159/000316895.
42. Donato JJ, Cravo RM, Frazão R, Elias CF. Hypothalamic Sites of Leptin Action Linking Metabolism and Reproduction. Neuroendocrinology. 2011;93(1):9-18. doi: 10.1159/000322472.
43. Горбатенко Н.В., Беженарь В.Ф., Фишман М.Б. Влияние ожирения на развитие нарушения репродуктивной функции у женщин (аналитический обзор литературы) // Ожирение и метаболизм. – 2017. – Т.14. – № 1 – С.3-8. [Gorbatenko NV, Bezhenar VF, Fishman MB. Obesity and reproductive health of women. Obesity and metabolism. 2017;14(1):3-8. (In Russ).] doi:10.14341/OMET201713-8
44. Ковалева Ю.В. Гормоны жировой ткани и их роль в формировании гормонального статуса и патогенезе метаболических нарушений у женщин // Артериальная гипертензия. – 2015. – Т.21. – № 4 – С.356-370. [Kovalyova YV. Adipose tissue hormones and their role for female fertility and metabolic disorders. Arterial hypertension. 2015;21(4):356-370. (In Russ).]
45. Santos ED, Pecquery R, Mazancourt Pd, Dieudonné M-N. Adiponectin and Reproduction. Vitam Horm. 2012;90:187-209. doi: 10.1016/b978-0-12-398313-8.00008-7.
46. Michalakis K, Mintziori G, Kaprara A, et al. The complex interaction between obesity, metabolic syndrome and reproductive axis: A narrative review. Metabolism. 2013;62(4):457-478. doi: 10.1016/j.metabol.2012.08.012.
47. Sharma A, Bahadursingh S, Ramsewak S, Teelucksingh S. Medical and surgical interventions to improve outcomes in obese women planning for pregnancy. Best Practice & Research Clinical Obstetrics & Gynaecology. 2015;29(4):565-576. doi: 10.1016/j.bpobgyn.2014.12.003.
48. Вербицкая О.Г., Попова В.А., Афонин А.А., и др. Клинико-диагностическое значение определения лептина и андрогенов у мальчиков и подростков с ожирением // Медицинский вестник Юга России. – 2013. – № 2. – С.37-42. [Verbitskaya OG, Popova VA, Afonin AA, et al. Clinicodiagnostic value of determination of leptin and androgenic hormones in boys and teenagers with obesity. Medical Herald of the South of Russia. 2013;(2):37-43. (In Russ).] doi:10.21886/2219-8075-2013-2-37-43
49. Калинченко С.Ю., Тюзиков И.А., Ворслов Л.О., Тишова Ю.А. Ожирение, инсулинорезистентность и репродуктивное здоровье мужчины: патогенетические взаимодействия и современная патогенетическая фармакотерапия // Эффективная фармакотерапия. – 2015. – № 27. – С.66-79. [Kalinchenko SY, Tyuzikov IA, Vorslov LO, Tishova YA. Insulin Resistance and Male Reproductive Health: Pathogenic Interactions and Pathogenetic Pharmacotherapy. Effective Pharmacotherapy. 2015;(27):66-79. (In Russ).]
50. ShaflK A, Olfat S. Scrotal Lipomatosis. Br. J. Urol. 1981;53(1):50-54. doi: 10.1111/j.1464-410X.1981.tb03128.x.
51. Aleidi S, Issa A, Bustanji H, et al. Adiponectin serum levels correlate with insulin resistance in type 2 diabetic patients. Saudi Pharmaceutical Journal. 2015;23(3):250-256. doi: 10.1016/j.jsps.2014.11.011.
52. Adamczak M, Rzepka E, Chudek J, Wiecek A. Ageing and plasma adiponectin concentration in apparently healthy males and females. Clin. Endocrinol. (Oxf.). 2005;62(1):114-118. doi: 10.1111/j.1365-2265.2004.02182.x.
53. Солнцева А.В., Аксенова Е.А., Сукало А.В., и др. Гендерные различия и генетический полиморфизм адипонектина у детей с алиментарным ожирением // ВЕСЦІ НАЦЫЯНАЛЬНАЙ АКАДЭМІІ НАВУК БЕЛАРУСІ. СЕРЫЯ МЕДЫЦЫНСКІХ НАВУК. – 2011. – № 2. – С.29-37. [Solntseva AV, Askionova EA, Sukalo AV, et al. Gender changes and genetic polymorphism of adiponectin in children with obesity. Vestsі natsyyanal'nai Akademіі Navuk belarusі. Seryya medytsynskіkh navuk. 2011;(2):29-37. (In Russ).]
54. Baek K-H, Daan NMP, Koster MPH, et al. Biomarker Profiles in Women with PCOS and PCOS Offspring; A Pilot Study. PLoS One. 2016;11(11):e0165033. doi: 10.1371/journal.pone.0165033.
55. Bonneau GA, Pedrozo WR, Berg G. Adiponectin and waist circumference as predictors of insulin-resistance in women. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2014;8(1):3-7. doi: 10.1016/j.dsx.2013.10.005.
56. Høeg LD, Sjøberg KA, Lundsgaard A-M, et al. Adiponectin concentration is associated with muscle insulin sensitivity, AMPK phosphorylation, and ceramide content in skeletal muscles of men but not women. J. Appl. Physiol. 2013;114(5):592-601. doi: 10.1152/japplphysiol.01046.2012.
57. Мкртумян А.М., Маркова Т.Н., Мищенко Н.К. Влияние ингибиторов натрий-зависимых котранспортеров глюкозы 2 типа на уровень гликированного гемоглобина и массу тела у больных сахарным диабетом 2 типа // ДОКТОР.РУ. – 2016. – № 3. – С.55-58. [Mkrtumyan AM, Markova TN, Mishchenko NK. Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Glycosylated Hemoglobin Levels and Body Weight in Patients with Type 2 Diabetes Mellitus. Doctor.Ru. 2016;(3):55-58. (In Russ).]
58. Nagao K, Yoshida S, Konishi H. Gender differences in the gene expression profiles of glucose transporter GLUT class I and SGLT in mouse tissues. Die Farmazie. 2014 Nov;69(11):856-9.
59. Sabolić I, Škarica M, Gorboulev V, et al. Rat renal glucose transporter SGLT1 exhibits zonal distribution and androgen-dependent gender differences. American Journal of Physiology-Renal Physiology. 2006;290(4):F913-F926. doi: 10.1152/ajprenal.00270.2005.
60. Sabolić I, Vrhovac I, Eror DB, et al. Expression of Na+-d-glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences. American Journal of Physiology-Cell Physiology. 2012;302(8):C1174-C1188. doi: 10.1152/ajpcell.00450.2011.
Supplementary files
Review
For citations:
Tsygankova O.V., Badin A.R., Bondareva Z.G., Lozhkina N.G., Platonov D.Y. Associations of sex hormones with components of insulin-glucose homeostasis. Obesity and metabolism. 2018;15(2):3-10. (In Russ.)