Metabolic mechanisms of development and compensation of osmotic stress in the brain
https://doi.org/10.14341/omet2017473-76
Abstract
Extracellular fluid of the brain, consisting of cerebrospinal fluid and interstitial fluid, is normally isotonic to blood plasma. Problems arise with a rapid change in osmolality of circulating blood or interstitial brain fluid. The permeability of the blood-brain barrier is lower than in the peripheral capillaries, but this permeability is still several times greater than the passive permeability for electrolytes or glucose. Because of this difference, it is believed that the brain is like an osmometer: it swells with reduced plasma osmolality and contracts (dehydrated) when the plasma becomes hypertonic. Osmotic stress has a direct effect on the functioning of the brain and triggers physiological compensatory mechanisms, in the absence of which due to the intensity or duration of stress, irreversible serious complications may develop. Knowledge and understanding of these processes are the basis for preventing their development and treatment.
About the Authors
Ekaterina A. PigarovaEndocrinology Research Centre
Russian Federation
PhD
Larisa K. Dzeranova
Endocrinology Research Centre
Russian Federation
ScD
References
1. Kaneshiro E. Cell Physiology Source Book: Essentials of Membrane Biophysics: Academic Press; 2011.
2. Somjen GG. Ions in the brain: normal function, seizures, and stroke: Oxford University Press; 2004.
3. Pardridge WM. CSF, blood-brain barrier, and brain drug delivery. Expert Opinion on Drug Delivery. 2016;13(7):963-975. doi: 10.1517/17425247.2016.1171315.
4. Laming PR, Kimelberg H, Robinson S, et al. Neuronal-glial interactions and behaviour. Neurosci Biobehav Rev. 2000;24(3):295-340.
5. Knepper MA, Verbalis JG, Nielsen S. Role of aquaporins in water balance disorders. Curr Opin Nephrol Hypertens. 1997;6(4):367-371.
6. Walz W. Chloride/anion channels in glial cell membranes. Glia. 2002;40(1):1-10. doi: 10.1002/glia.10125.
7. Gullans SR, Verbalis JG. Control of Brain Volume During Hyperosmolar and Hypoosmolar Conditions. Annu Rev Med. 1993;44(1):289-301. doi: 10.1146/annurev.me.44.020193.001445.
8. Thomas SA, Davson H, Segal MB. Quantification of efflux into the blood and brain of intraventricularly perfused [3H]thymidine in the anaesthetized rabbit. Exp Physiol. 1997;82(1):139-148. doi: 10.1113/expphysiol.1997.sp004003.
9. Theodorakis PE, Müller EA, Craster RV, Matar OK. Physical insights into the blood–brain barrier translocation mechanisms. Phys Biol. 2017;14(4):041001. doi: 10.1088/1478-3975/aa708a.
10. Kimelberg HK, Schools GP, Cai Z, Zhou M. Mini-Review-Freshly Isolated Astrocyte (FIA) Preparations: A Useful Single Cell System for Studying Astrocyte Properties. J Neurosci Res. 2000;61(6):577-587.
11. Nico B, Frigeri A, Nicchia GP, et al. Role of aquaporin-4 water channel in the development and integrity of the blood-brain barrier. J Cell Sci. 2001;114(7):1297-1307.
12. Oja SS, Schousbore A, Saransaari P. Handbook of neurochemistry and molecular neurobiology. Springer, New York; 2007. doi: 10.1007/978-0-387-30373-4.
13. Heilig CW, Stromski ME, Blumenfeld JD, et al. Characterization of the major brain osmolytes that accumulate in salt-loaded rats. Am J Physiol. 1989;257(6 Pt 2):F1108-1116. doi: 10.1152/ajprenal.1989.257.6.F1108.
14. Lien YH, Shapiro JI, Chan L. Effects of hypernatremia on organic brain osmoles. J Clin Invest. 1990;85(5):1427-1435. doi: 10.1172/jci114587.
15. Naganathan S, Al-Dhahir M. Hypernatremia. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2017.
16. Campbell N, Train E. A Systematic Review of Fatalities Related to Acute Ingestion of Salt. A Need for Warning Labels? Nutrients. 2017;9(7):648. doi: 10.3390/nu9070648.
Review
For citations:
Pigarova E.A., Dzeranova L.K. Metabolic mechanisms of development and compensation of osmotic stress in the brain. Obesity and metabolism. 2017;14(4):73-76. (In Russ.) https://doi.org/10.14341/omet2017473-76

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).